Browse Source

2.0.7.60

master
ming.hong 1 year ago
parent
commit
ac7ee53982
  1. BIN
      -lstdc++
  2. 5
      .vscode/settings.json
  3. 12
      LICENSE
  4. 13
      LICENSE.fuck
  5. 91
      LICENSE.gen
  6. 674
      LICENSE.gpl
  7. 8
      LICENSE.meta
  8. 22
      LICENSE.mit
  9. 13
      LICENSE.v1
  10. 75
      Makefile
  11. BIN
      Original.jpg
  12. 3174
      cacert.pem
  13. 96
      cfg/alexnet.cfg
  14. 121
      cfg/cifar.cfg
  15. 117
      cfg/cifar.test.cfg
  16. 8
      cfg/coco.data
  17. 10
      cfg/combine9k.data
  18. 120
      cfg/darknet.cfg
  19. 205
      cfg/darknet19.cfg
  20. 197
      cfg/darknet19_448.cfg
  21. 566
      cfg/darknet53.cfg
  22. 559
      cfg/darknet53_448.cfg
  23. 205
      cfg/darknet9000.cfg
  24. 1951
      cfg/densenet201.cfg
  25. 209
      cfg/extraction.cfg
  26. 179
      cfg/extraction.conv.cfg
  27. 206
      cfg/extraction22k.cfg
  28. 132
      cfg/go.cfg
  29. 132
      cfg/go.test.cfg
  30. 29
      cfg/gru.cfg
  31. 8
      cfg/imagenet1k.data
  32. 9
      cfg/imagenet22k.dataset
  33. 9
      cfg/imagenet9k.hierarchy.dataset
  34. 118
      cfg/jnet-conv.cfg
  35. 8
      cfg/openimages.data
  36. 990
      cfg/resnet101.cfg
  37. 1460
      cfg/resnet152.cfg
  38. 228
      cfg/resnet18.cfg
  39. 392
      cfg/resnet34.cfg
  40. 510
      cfg/resnet50.cfg
  41. 1053
      cfg/resnext101-32x4d.cfg
  42. 1562
      cfg/resnext152-32x4d.cfg
  43. 523
      cfg/resnext50.cfg
  44. 38
      cfg/rnn.cfg
  45. 38
      cfg/rnn.train.cfg
  46. 182
      cfg/strided.cfg
  47. 117
      cfg/t1.test.cfg
  48. 174
      cfg/tiny.cfg
  49. 157
      cfg/vgg-16.cfg
  50. 121
      cfg/vgg-conv.cfg
  51. 6
      cfg/voc.data
  52. 41
      cfg/writing.cfg
  53. 218
      cfg/yolo9000.cfg
  54. 130
      cfg/yolov1-tiny.cfg
  55. 261
      cfg/yolov1.cfg
  56. 138
      cfg/yolov2-tiny-voc.cfg
  57. 139
      cfg/yolov2-tiny.cfg
  58. 258
      cfg/yolov2-voc.cfg
  59. 258
      cfg/yolov2.cfg
  60. 789
      cfg/yolov3-openimages.cfg
  61. 822
      cfg/yolov3-spp.cfg
  62. 182
      cfg/yolov3-tiny.cfg
  63. 785
      cfg/yolov3-voc.cfg
  64. 789
      cfg/yolov3.cfg
  65. 9418
      data/9k.labels
  66. 9418
      data/9k.names
  67. 9418
      data/9k.tree
  68. 80
      data/coco.names
  69. 80
      data/coco9k.map
  70. BIN
      data/dog.jpg
  71. BIN
      data/eagle.jpg
  72. BIN
      data/giraffe.jpg
  73. 3
      data/goal.txt
  74. BIN
      data/horses.jpg
  75. 21842
      data/imagenet.labels.list
  76. 21842
      data/imagenet.shortnames.list
  77. 200
      data/inet9k.map
  78. BIN
      data/kite.jpg
  79. BIN
      data/labels/100_0.png
  80. BIN
      data/labels/100_1.png
  81. BIN
      data/labels/100_2.png
  82. BIN
      data/labels/100_3.png
  83. BIN
      data/labels/100_4.png
  84. BIN
      data/labels/100_5.png
  85. BIN
      data/labels/100_6.png
  86. BIN
      data/labels/100_7.png
  87. BIN
      data/labels/101_0.png
  88. BIN
      data/labels/101_1.png
  89. BIN
      data/labels/101_2.png
  90. BIN
      data/labels/101_3.png
  91. BIN
      data/labels/101_4.png
  92. BIN
      data/labels/101_5.png
  93. BIN
      data/labels/101_6.png
  94. BIN
      data/labels/101_7.png
  95. BIN
      data/labels/102_0.png
  96. BIN
      data/labels/102_1.png
  97. BIN
      data/labels/102_2.png
  98. BIN
      data/labels/102_3.png
  99. BIN
      data/labels/102_4.png
  100. BIN
      data/labels/102_5.png
  101. Some files were not shown because too many files have changed in this diff Show More

BIN
-lstdc++

Binary file not shown.

5
.vscode/settings.json vendored

@ -0,0 +1,5 @@
{
"files.associations": {
"structures.h": "c"
}
}

12
LICENSE

@ -0,0 +1,12 @@
YOLO LICENSE
Version 2, July 29 2016
THIS SOFTWARE LICENSE IS PROVIDED "ALL CAPS" SO THAT YOU KNOW IT IS SUPER
SERIOUS AND YOU DON'T MESS AROUND WITH COPYRIGHT LAW BECAUSE YOU WILL GET IN
TROUBLE HERE ARE SOME OTHER BUZZWORDS COMMONLY IN THESE THINGS WARRANTIES
LIABILITY CONTRACT TORT LIABLE CLAIMS RESTRICTION MERCHANTABILITY. NOW HERE'S
THE REAL LICENSE:
0. Darknet is public domain.
1. Do whatever you want with it.
2. Stop emailing me about it!

13
LICENSE.fuck

@ -0,0 +1,13 @@
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
Version 2, December 2004
Copyright (C) 2004 Sam Hocevar <sam@hocevar.net>
Everyone is permitted to copy and distribute verbatim or modified
copies of this license document, and changing it is allowed as long
as the name is changed.
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. You just DO WHAT THE FUCK YOU WANT TO.

91
LICENSE.gen

@ -0,0 +1,91 @@
RNN LICENSE Version 3, June 21 2017
Copyright (c) 1990, 1989, 1999 Free87337 May 48 THIRD PARTIES OR ANY OTHER THE
COMPLAIN OR CONSEQUENTIAL DAMAGES AND REGARDLESS OF WHETHER IN CONTRACT, TO THE
EXTENT REPAIR OR AGENTS (NOT THE IN ANY EVENT). THE SOFTWARE WILL BE
UNINTERRUPTED OR ERROR-FREE OR ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF ALL THE WORK (GOVERNED CODE) HIM RESPONSES, OR OF FINES,
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR ANY OTHER OR OTHER HARL UNDER NO
CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER TORT (INCLUDING NEGLIGENCE),
PATENT PERMITTED BY THE INSTAGRAM PARENT STATE OR TORT (INCLUDING NEGLIGENCE),
PRODUCT LIABILITY OR OTHERWISE, ARISING OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR ANYTHING PROVIDED IN THIS PRODUCT, COMMIS AND SERVICES
ARE LICENSED SOFTWARE AND ANY RESULE OR ANY OTHER THE COPYRIGHT HOLDERS BE
LIABLE FOR ANY SPECIAL, INCIDENTAL, CASE, SUCH WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE COPYRIGHT HOLDERS AND/OR ANY
PERSON FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY
EXPRESS OR DISTRIBUTE THAT ALL CLAIMS ARE SHALL CREATE DERAVE BE LIABLE TO YOU
WILL HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
6\. TERMINATION. TO THE EXTENT PERMITTED BY LAW, NO USE OF THE COVERED CODE IS
WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT THE
INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
SERVICING, REPAIR OR COULT OR IN ANY WAY OUT OF THE USE OF THE WEBSITES OR
SERVICE WILL BE CONSEQUENTIAL DAMAGES OF ANY KIND HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
This paragraph Agreement constitutes the entire agreement between the parties
with respect to the Work licensed here. However, if you place the name of the
fact that the arbitration was the consultation of the parties as a "patent is".
Subject to the terms and conditions of this License, Contributor has knowledge
that a license under a third party may also be used to endorse or promote
products derived from the Work, and there is no warranty on the Software and
Science Fees. For the purposes of this Agreement, attach the following
disclaimers (without liabilities of written notice to the Subject Software) in a
manner that a product is under common control with you. The Free Software
Foundation may publish revised and/or new versions of the License for the
Modifications made by the applicable terms. The Recipient shall promptly retain
the covered works for any reason be entered in any federal or state or login
Restricted Laws appearing in the United States or any of its own information
that is not disabled from a derivative work except as expressly permitted in
this License, to the extent that they are in receiving the Software and Source
Code or any exercise of the rights granted to You by this License or a
Contributor made by the Licensor or are authorized to make a reasonable
retirement by the courts of the courts located in Santa Clara County, California
printed and related to the Work or “Company” and Apache Software Foundation. If
the Licensor shall be entitled to reflect your rights to use the Software and
the Software to exercise the rights granted to the recipient without a
requirement to exercise the rights granted by the Agreement to the provision
will begin will appear in such cases, you will use such information without such
corporation shall be an officer with respect to any part of the Software or any
portion thereof. Capitalized terms are included in the Initial Contributor and
under no circumstances will license the Service at any time and for any direct,
indirect, special, incidental, or consequential damages of or assist in
connection with any Services or the registration purposes only to the extent
that it includes any or all means including the processing of which you download
any derivative work. Any of the purchases’ transmission purposes are made
available, if any, in other circumstances, we may review the copyright notice.
In the event that this Agreement is required to give us strict content. The
inclusion of the other party hereunder may also notify you Intellectual Property
Rights to any third party. This means that the Source Code exists of the Work
will not charge a program available to you at any time. You must include a
prominent statement that the Software is governed under a particular version of
this Agreement. You must include a provision to the extent that there is no
warranty for the content of others. You agree that the Recipient was appointed
as a Contributor, (c) are effective until terminated by hereunder, then the
registration are not disabled and not limited to, submit any Customer Data
without the updated use of the Software and that no fee is released. You grant
to Use Other Arbitration Rules for Diagnostic or Services may use or modify the
Apple Software and Consolidated Apple Software or Services. The Company may have
full risk as a product of the Compatible Source. A Contribution by the Licensor
or by the updated Software under the following conditions we can redistribute
any General Provision of this Agreement. If the Program is used in accordance
with the terms of this Agreement, Customer may provide advertisements from your
devices that clause you can your employer or a transaction or country that has
been controlled by the arbitrator, that they will be useful of this Agreement.
The term "Open Source Software is available in connection with the program, and
you may not protect the combination of the Covered Code. You should like to
select a user's rights to charge a copy of this License. I are Contributor's
confidentiality of the exercise of the rights granted herein. Such a covered
work is released as a consequence, the Licensor shall be eligible for a purpose
or subcontractor of the person or entity to the user of the user, then the word
"Application" means having the original fee for any reason; and that no patent
license to more than fifty stated close of the license term. The terms of this
License will the license terms and conditions set forth in Section 2.2 (OPEC)
and You will not use the Software or any set of responsibility for any resulting
information that the Original Code warrants that you have the right to disclose
these information (or in the notification; or (iii) late use of the software or
any third party to the three (50) days before such belief to the extent that it
includes a court court obtains the rights granted by this License.

674
LICENSE.gpl

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
{one line to give the program's name and a brief idea of what it does.}
Copyright (C) {year} {name of author}
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
{project} Copyright (C) {year} {fullname}
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

8
LICENSE.meta

@ -0,0 +1,8 @@
META-LICENSE
Version 1, June 21 2017
Any and all licenses may be applied to the software either individually
or in concert. Any issues, ambiguities, paradoxes, or metaphysical quandries
arising from this combination should be discussed with a local faith leader,
hermit, or guru. The Oxford comma shall be used.

22
LICENSE.mit

@ -0,0 +1,22 @@
MIT License
Copyright (c) 2017 Joseph Redmon
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

13
LICENSE.v1

@ -0,0 +1,13 @@
YOLO LICENSE
Version 1, July 10 2015
THIS SOFTWARE LICENSE IS PROVIDED "ALL CAPS" SO THAT YOU KNOW IT IS SUPER
SERIOUS AND YOU DON'T MESS AROUND WITH COPYRIGHT LAW BECAUSE YOU WILL GET IN
TROUBLE HERE ARE SOME OTHER BUZZWORDS COMMONLY IN THESE THINGS WARRANTIES
LIABILITY CONTRACT TORT LIABLE CLAIMS RESTRICTION MERCHANTABILITY SUBJECT TO
THE FOLLOWING CONDITIONS:
1. #yolo
2. #swag
3. #blazeit

75
Makefile

@ -0,0 +1,75 @@
GPU=0
CUDNN=0
OPENCV=0
OPENMP=0
DEBUG=0
OS := $(shell uname)
#VPATH=./src/:./examples
VPATH=./src
#SLIB= libopencv_core.so libopencv_highgui.so
ALIB=libdarknet.a
EXEC=gynet
OBJDIR=./obj/
#-I/usr/local/opencv/include
#-L/usr/local/opencv/lib
TOOLCHAIN_PATH ?= /usr/local/linaro-aarch64-2018.08-gcc8.2
CROSS_COMPILE_TOOL_CHAIN_PATH := $(TOOLCHAIN_PATH)
CC = $(CROSS_COMPILE_TOOL_CHAIN_PATH)/bin/aarch64-linux-gnu-gcc
CPP = $(CROSS_COMPILE_TOOL_CHAIN_PATH)/bin/aarch64-linux-gnu-g++
#CC=gcc
#CPP=g++
NVCC=nvcc
AR=ar
ARFLAGS=rcs
OPTS=-Ofast
LDFLAGS= -lm -pthread -L$(PWD) -Wl,--start-group libcurl.a libssl.a libcrypto.a libz.a -lpng16 -ldl -lpthread libjpeg.a libpng16.a libopencv_core.a libopencv_imgproc.a libopencv_imgcodecs.a libopencv_video.a libopencv_img_hash.a -Wl,--end-group
#COMMON= -Iinclude/ -Isrc/
COMMON= -Iinclude/ -Isrc/ -Isrc/opencv/ -Isrc/opencv2/ -Iinclude/ambarella/ -Iinclude/ambarella/arch_v5/
CFLAGS=-Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC
CFLAGS+=$(OPTS)
OBJ=gemm.o utility.o utils.o cJSON.o cryptionPlus.o nweb.o strptime_c.o gettest.o exif.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o route_layer.o upsample_layer.o box.o normalization_layer.o avgpool_layer.o layer.o local_layer.o shortcut_layer.o logistic_layer.o activation_layer.o rnn_layer.o gru_layer.o crnn_layer.o demo.o batchnorm_layer.o region_layer.o reorg_layer.o tree.o lstm_layer.o l2norm_layer.o yolo_layer.o iseg_layer.o image_opencv.o art.o detector.o darknet.o test_nnctrl_live.o amba_bbox_utils.o amba_ssd_detection_out.o amba_yolov3_out.o lib_data_process.o signal_test.o iniReader.o alm_queue.o sqlite_db.o fflpr_plate_db.o cgicmd.o encrypt.o decrypt.o ColorDetector.o base64.o intLib.o sha1.o websocket.o ptz.o pns.o md5.o cold_zone.o pns.o net_curl.o ivs.o fork_pipe_lib.o cv_point_transform.o block_to_send.o md5_f.o url_encode.o send_osd_data.o ir_control.o dbscan.o levenshtein.o levenshtein_sqlite.o yuv_rgb.o test_yuv_rgb.o structures.o barcode.o onvif_data.o ivs_detection.o pythonR.o anpr_rule.o k_means.o parking_method.o
#osd_server_yolov3.o osd_server_utils.o lib_smartfb.o
#captcha.o yolo.o cifar.o classifier.o coco.o go.o instance-segmenter.o lsd.o nightmare.o regressor.o
#segmenter.o super.o
OBJS = $(addprefix $(OBJDIR), $(OBJ))
DEPS = $(wildcard src/*.h) $(wildcard src/*.hpp) $(wildcard src/opencv/*.h) $(wildcard src/opencv/*.hpp) $(wildcard src/opencv2/*.h) $(wildcard src/opencv2/*.hpp) $(wildcard include/ambarella/freetype/*.h) $(wildcard include/ambarella/freetype/config/*.h)
#all: obj backup results $(ALIB) $(EXEC)
all: obj results $(ALIB) $(EXEC) libnnctrl.so #lib_data_process.so
$(EXEC): $(ALIB)
$(CC) -g $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS) libzlog.a -lstdc++ $(ALIB) \
libnnctrl.so libcavalry_mem.so libvproc.so libfreetype.so libsqlite3.so libidn2.so.0.3.5 libnghttp2.so.14.13.3 libunistring.so.2.1.0 libzbar.so.0.2.0
#lib_data_process.so
$(ALIB): $(OBJS)
$(AR) $(ARFLAGS) $@ $^
$(OBJDIR)%.o: %.cpp $(DEPS)
$(CPP) $(COMMON) $(CFLAGS) -c $< -o $@
$(OBJDIR)%.o: %.c $(DEPS)
$(CC) $(COMMON) $(CFLAGS) -c $< -o $@
obj:
mkdir -p obj
backup:
mkdir -p backup
results:
mkdir -p results
.PHONY: clean
clean:
rm -rf $(OBJS) $(SLIB) $(ALIB) $(EXEC) $(EXECOBJ) $(OBJDIR)/*

BIN
Original.jpg

Binary file not shown.

After

Width:  |  Height:  |  Size: 91 KiB

3174
cacert.pem

File diff suppressed because it is too large Load Diff

96
cfg/alexnet.cfg

@ -0,0 +1,96 @@
[net]
# Training
# batch=128
# subdivisions=1
# Testing
batch=1
subdivisions=1
height=227
width=227
channels=3
momentum=0.9
decay=0.0005
max_crop=256
learning_rate=0.01
policy=poly
power=4
max_batches=800000
angle=7
hue = .1
saturation=.75
exposure=.75
aspect=.75
[convolutional]
filters=96
size=11
stride=4
pad=0
activation=relu
[maxpool]
size=3
stride=2
padding=0
[convolutional]
filters=256
size=5
stride=1
pad=1
activation=relu
[maxpool]
size=3
stride=2
padding=0
[convolutional]
filters=384
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=384
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
[maxpool]
size=3
stride=2
padding=0
[connected]
output=4096
activation=relu
[dropout]
probability=.5
[connected]
output=4096
activation=relu
[dropout]
probability=.5
[connected]
output=1000
activation=linear
[softmax]
groups=1

121
cfg/cifar.cfg

@ -0,0 +1,121 @@
[net]
batch=128
subdivisions=1
height=28
width=28
channels=3
max_crop=32
min_crop=32
hue=.1
saturation=.75
exposure=.75
learning_rate=0.4
policy=poly
power=4
max_batches = 5000
momentum=0.9
decay=0.0005
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[dropout]
probability=.5
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[dropout]
probability=.5
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[dropout]
probability=.5
[convolutional]
filters=10
size=1
stride=1
pad=1
activation=leaky
[avgpool]
[softmax]
groups=1

117
cfg/cifar.test.cfg

@ -0,0 +1,117 @@
[net]
batch=128
subdivisions=1
height=32
width=32
channels=3
momentum=0.9
decay=0.0005
learning_rate=0.4
policy=poly
power=4
max_batches = 50000
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[dropout]
probability=.5
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[dropout]
probability=.5
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[dropout]
probability=.5
[convolutional]
filters=10
size=1
stride=1
pad=1
activation=leaky
[avgpool]
[softmax]
groups=1
temperature=3

8
cfg/coco.data

@ -0,0 +1,8 @@
classes= 80
train = /home/pjreddie/data/coco/trainvalno5k.txt
valid = coco_testdev
#valid = data/coco_val_5k.list
names = data/coco.names
backup = /home/pjreddie/backup/
eval=coco

10
cfg/combine9k.data

@ -0,0 +1,10 @@
classes= 9418
#train = /home/pjreddie/data/coco/trainvalno5k.txt
train = data/combine9k.train.list
valid = /home/pjreddie/data/imagenet/det.val.files
labels = data/9k.labels
names = data/9k.names
backup = backup/
map = data/inet9k.map
eval = imagenet
results = results

120
cfg/darknet.cfg

@ -0,0 +1,120 @@
[net]
# Training
# batch=128
# subdivisions=1
# Testing
batch=1
subdivisions=1
height=256
width=256
min_crop=128
max_crop=448
channels=3
momentum=0.9
decay=0.0005
burn_in=1000
learning_rate=0.1
policy=poly
power=4
max_batches=800000
angle=7
hue=.1
saturation=.75
exposure=.75
aspect=.75
[convolutional]
batch_normalize=1
filters=16
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[avgpool]
[convolutional]
filters=1000
size=1
stride=1
pad=1
activation=linear
[softmax]
groups=1

205
cfg/darknet19.cfg

@ -0,0 +1,205 @@
[net]
# Training
#batch=128
#subdivisions=2
# Testing
batch=1
subdivisions=1
height=256
width=256
min_crop=128
max_crop=448
channels=3
momentum=0.9
decay=0.0005
burn_in=1000
learning_rate=0.1
policy=poly
power=4
max_batches=800000
angle=7
hue=.1
saturation=.75
exposure=.75
aspect=.75
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=1000
size=1
stride=1
pad=1
activation=linear
[avgpool]
[softmax]
groups=1

197
cfg/darknet19_448.cfg

@ -0,0 +1,197 @@
[net]
batch=128
subdivisions=4
height=448
width=448
max_crop=512
channels=3
momentum=0.9
decay=0.0005
learning_rate=0.001
policy=poly
power=4
max_batches=100000
angle=7
hue = .1
saturation=.75
exposure=.75
aspect=.75
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=1000
size=1
stride=1
pad=1
activation=linear
[avgpool]
[softmax]
groups=1

566
cfg/darknet53.cfg

@ -0,0 +1,566 @@
[net]
# Training
# batch=128
# subdivisions=4
# Testing
batch=1
subdivisions=1
height=256
width=256
channels=3
min_crop=128
max_crop=448
burn_in=1000
learning_rate=0.1
policy=poly
power=4
max_batches=800000
momentum=0.9
decay=0.0005
angle=7
hue=.1
saturation=.75
exposure=.75
aspect=.75
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
# Downsample
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[avgpool]
[convolutional]
filters=1000
size=1
stride=1
pad=1
activation=linear
[softmax]
groups=1

559
cfg/darknet53_448.cfg

@ -0,0 +1,559 @@
[net]
# Training - start training with darknet53.weights
# batch=128
# subdivisions=8
# Testing
batch=1
subdivisions=1
height=448
width=448
channels=3
min_crop=448
max_crop=512
learning_rate=0.001
policy=poly
power=4
max_batches=100000
momentum=0.9
decay=0.0005
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
# Downsample
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[avgpool]
[convolutional]
filters=1000
size=1
stride=1
pad=1
activation=linear
[softmax]
groups=1

205
cfg/darknet9000.cfg

@ -0,0 +1,205 @@
[net]
# Training
# batch=128
# subdivisions=4
# Testing
batch = 1
subdivisions = 1
height=448
width=448
max_crop=512
channels=3
momentum=0.9
decay=0.0005
learning_rate=0.001
policy=poly
power=4
max_batches=100000
angle=7
hue=.1
saturation=.75
exposure=.75
aspect=.75
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=9418
size=1
stride=1
pad=1
activation=linear
[avgpool]
[softmax]
groups=1
tree=data/9k.tree
[cost]
type=masked

1951
cfg/densenet201.cfg

File diff suppressed because it is too large Load Diff

209
cfg/extraction.cfg

@ -0,0 +1,209 @@
[net]
# Training
# batch=128
# subdivisions=4
# Testing
batch=1
subdivisions=1
height=224
width=224
max_crop=320
channels=3
momentum=0.9
decay=0.0005
learning_rate=0.1
policy=poly
power=4
max_batches=1600000
[convolutional]
batch_normalize=1
filters=64
size=7
stride=2
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=192
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=1000
size=1
stride=1
pad=1
activation=leaky
[avgpool]
[softmax]
groups=1

179
cfg/extraction.conv.cfg

@ -0,0 +1,179 @@
[net]
batch=1
subdivisions=1
height=256
width=256
channels=3
momentum=0.9
decay=0.0005
learning_rate=0.5
policy=poly
power=6
max_batches=500000
[convolutional]
filters=64
size=7
stride=2
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
filters=192
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
filters=1024
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
filters=1024
size=3
stride=1
pad=1
activation=leaky
[avgpool]
[connected]
output=1000
activation=leaky
[softmax]
groups=1

206
cfg/extraction22k.cfg

@ -0,0 +1,206 @@
[net]
batch=128
subdivisions=1
height=224
width=224
max_crop=320
channels=3
momentum=0.9
decay=0.0005
learning_rate=0.01
max_batches = 0
policy=steps
steps=444000,590000,970000
scales=.5,.2,.1
#policy=sigmoid
#gamma=.00008
#step=100000
#max_batches=200000
[convolutional]
batch_normalize=1
filters=64
size=7
stride=2
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=192
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=2048
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=2048
size=3
stride=1
pad=1
activation=leaky
[avgpool]
[connected]
output=21842
activation=leaky
[softmax]
groups=1

132
cfg/go.cfg

@ -0,0 +1,132 @@
[net]
batch=512
subdivisions=1
height=19
width=19
channels=1
momentum=0.9
decay=0.0005
burn_in=1000
learning_rate=0.1
policy=poly
power=4
max_batches=10000000
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=1
size=1
stride=1
pad=1
activation=linear
[reorg]
extra=1
stride=1
[softmax]

132
cfg/go.test.cfg

@ -0,0 +1,132 @@
[net]
batch=1
subdivisions=1
height=19
width=19
channels=1
momentum=0.9
decay=0.0005
learning_rate=0.01
policy=poly
power=4
max_batches=100000
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
batch_normalize=1
[convolutional]
filters=1
size=1
stride=1
pad=1
activation=linear
[reorg]
extra=1
stride=1
[softmax]

29
cfg/gru.cfg

@ -0,0 +1,29 @@
[net]
inputs=256
momentum=0.9
decay=0.0
subdivisions=1
batch = 1
time_steps=1
learning_rate=.002
adam=1
policy=constant
power=4
max_batches=1000000
[gru]
output = 256
[gru]
output = 256
[gru]
output = 256
[connected]
output=256
activation=linear
[softmax]

8
cfg/imagenet1k.data

@ -0,0 +1,8 @@
classes=1000
train = /data/imagenet/imagenet1k.train.list
valid = /data/imagenet/imagenet1k.valid.list
backup = /home/pjreddie/backup/
labels = data/imagenet.labels.list
names = data/imagenet.shortnames.list
top=5

9
cfg/imagenet22k.dataset

@ -0,0 +1,9 @@
classes=21842
train = /data/imagenet/imagenet22k.train.list
valid = /data/imagenet/imagenet22k.valid.list
#valid = /data/imagenet/imagenet1k.valid.list
backup = /home/pjreddie/backup/
labels = data/imagenet.labels.list
names = data/imagenet.shortnames.list
top = 5

9
cfg/imagenet9k.hierarchy.dataset

@ -0,0 +1,9 @@
classes=9418
train = data/9k.train.list
valid = /data/imagenet/imagenet1k.valid.list
leaves = data/imagenet1k.labels
backup = /home/pjreddie/backup/
labels = data/9k.labels
names = data/9k.names
top=5

118
cfg/jnet-conv.cfg

@ -0,0 +1,118 @@
[net]
batch=1
subdivisions=1
height=10
width=10
channels=3
learning_rate=0.01
momentum=0.9
decay=0.0005
[convolutional]
filters=32
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
stride=2
size=2
[convolutional]
filters=64
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
stride=2
size=2
[convolutional]
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
stride=2
size=2
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
stride=2
size=2
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
stride=2
size=2
[convolutional]
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=1024
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2

8
cfg/openimages.data

@ -0,0 +1,8 @@
classes= 601
train = /home/pjreddie/data/openimsv4/openimages.train.list
#valid = coco_testdev
valid = data/coco_val_5k.list
names = data/openimages.names
backup = /home/pjreddie/backup/
eval=coco

990
cfg/resnet101.cfg

@ -0,0 +1,990 @@
[net]
# Training
# batch=128
# subdivisions=2
# Testing
batch=1
subdivisions=1
height=256
width=256
channels=3
min_crop=128
max_crop=448
burn_in=1000
learning_rate=0.1
policy=poly
power=4
max_batches=800000
momentum=0.9
decay=0.0005
angle=7
hue=.1
saturation=.75
exposure=.75
aspect=.75
[convolutional]
batch_normalize=1
filters=64
size=7
stride=2
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
# Conv 4
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
#Conv 5
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=2048
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=2048
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=2048
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
filters=1000
size=1
stride=1
pad=1
activation=linear
[avgpool]
[softmax]
groups=1
[cost]
type=sse

1460
cfg/resnet152.cfg

File diff suppressed because it is too large Load Diff

228
cfg/resnet18.cfg

@ -0,0 +1,228 @@
[net]
# Training
# batch=128
# subdivisions=1
# Testing
batch=1
subdivisions=1
height=256
width=256
channels=3
min_crop=128
max_crop=448
burn_in=1000
learning_rate=0.1
policy=poly
power=4
max_batches=800000
momentum=0.9
decay=0.0005
angle=7
hue=.1
saturation=.75
exposure=.75
aspect=.75
[convolutional]
batch_normalize=1
filters=64
size=7
stride=2
pad=1
activation=leaky
[maxpool]
size=2
stride=2
# Residual Block
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Strided Residual Block
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Strided Residual Block
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Strided Residual Block
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
[avgpool]
[convolutional]
filters=1000
size=1
stride=1
pad=1
activation=linear
[softmax]
groups=1

392
cfg/resnet34.cfg

@ -0,0 +1,392 @@
[net]
# Training
# batch=128
# subdivisions=2
# Testing
batch=1
subdivisions=1
height=256
width=256
channels=3
min_crop=128
max_crop=448
burn_in=1000
learning_rate=0.1
policy=poly
power=4
max_batches=800000
momentum=0.9
decay=0.0005
angle=7
hue=.1
saturation=.75
exposure=.75
aspect=.75
[convolutional]
batch_normalize=1
filters=64
size=7
stride=2
pad=1
activation=leaky
[maxpool]
size=2
stride=2
# Residual Block
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Strided Residual Block
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Strided Residual Block
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
# Residual Block
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=linear
[shortcut]
activation=leaky
from=-3
[avgpool]
[convolutional]
filters=1000
size=1
stride=1
pad=1
activation=linear
[softmax]
groups=1

510
cfg/resnet50.cfg

@ -0,0 +1,510 @@
[net]
# Training
# batch=128
# subdivisions=4
# Testing
batch=1
subdivisions=1
height=256
width=256
channels=3
min_crop=128
max_crop=448
burn_in=1000
learning_rate=0.1
policy=poly
power=4
max_batches=800000
momentum=0.9
decay=0.0005
angle=7
hue=.1
saturation=.75
exposure=.75
aspect=.75
[convolutional]
batch_normalize=1
filters=64
size=7
stride=2
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
# Conv 4
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
#Conv 5
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=2048
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=2048
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=2048
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[avgpool]
[convolutional]
filters=1000
size=1
stride=1
pad=1
activation=linear
[softmax]
groups=1

1053
cfg/resnext101-32x4d.cfg

File diff suppressed because it is too large Load Diff

1562
cfg/resnext152-32x4d.cfg

File diff suppressed because it is too large Load Diff

523
cfg/resnext50.cfg

@ -0,0 +1,523 @@
[net]
# Training
# batch=128
# subdivisions=4
# Testing
batch=1
subdivisions=1
height=256
width=256
channels=3
min_crop=128
max_crop=448
burn_in=1000
learning_rate=0.1
policy=poly
power=4
max_batches=800000
momentum=0.9
decay=0.0005
angle=7
hue=.1
saturation=.75
exposure=.75
aspect=.75
[convolutional]
batch_normalize=1
filters=64
size=7
stride=2
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
groups=32
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
groups=32
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
groups=32
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
groups=32
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
groups=32
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
groups=32
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
groups=32
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
# Conv 4
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
groups=32
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
groups=32
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
groups=32
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
groups=32
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
groups=32
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
groups=32
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
#Conv 5
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
groups=32
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=2048
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
groups=32
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=2048
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
groups=32
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=2048
size=1
stride=1
pad=1
activation=linear
[shortcut]
from=-4
activation=leaky
[avgpool]
[convolutional]
filters=1000
size=1
stride=1
pad=1
activation=linear
[softmax]
groups=1

38
cfg/rnn.cfg

@ -0,0 +1,38 @@
[net]
subdivisions=1
inputs=256
batch = 1
momentum=0.9
decay=0.001
max_batches = 2000
time_steps=1
learning_rate=0.1
policy=steps
steps=1000,1500
scales=.1,.1
[rnn]
batch_normalize=1
output = 1024
hidden=1024
activation=leaky
[rnn]
batch_normalize=1
output = 1024
hidden=1024
activation=leaky
[rnn]
batch_normalize=1
output = 1024
hidden=1024
activation=leaky
[connected]
output=256
activation=leaky
[softmax]

38
cfg/rnn.train.cfg

@ -0,0 +1,38 @@
[net]
subdivisions=1
inputs=256
batch = 128
momentum=0.9
decay=0.001
max_batches = 2000
time_steps=576
learning_rate=0.1
policy=steps
steps=1000,1500
scales=.1,.1
[rnn]
batch_normalize=1
output = 1024
hidden=1024
activation=leaky
[rnn]
batch_normalize=1
output = 1024
hidden=1024
activation=leaky
[rnn]
batch_normalize=1
output = 1024
hidden=1024
activation=leaky
[connected]
output=256
activation=leaky
[softmax]

182
cfg/strided.cfg

@ -0,0 +1,182 @@
[net]
batch=128
subdivisions=4
height=256
width=256
channels=3
momentum=0.9
decay=0.0005
learning_rate=0.01
policy=steps
scales=.1,.1,.1
steps=200000,300000,400000
max_batches=800000
[crop]
crop_height=224
crop_width=224
flip=1
angle=0
saturation=1
exposure=1
shift=.2
[convolutional]
filters=64
size=7
stride=2
pad=1
activation=ramp
[convolutional]
filters=192
size=3
stride=2
pad=1
activation=ramp
[convolutional]
filters=128
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=256
size=3
stride=2
pad=1
activation=ramp
[convolutional]
filters=128
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=ramp
[convolutional]
filters=128
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=512
size=3
stride=2
pad=1
activation=ramp
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=ramp
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=ramp
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=ramp
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=ramp
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=1024
size=3
stride=2
pad=1
activation=ramp
[convolutional]
filters=512
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=1024
size=3
stride=1
pad=1
activation=ramp
[maxpool]
size=3
stride=2
[connected]
output=4096
activation=ramp
[dropout]
probability=0.5
[connected]
output=1000
activation=ramp
[softmax]

117
cfg/t1.test.cfg

@ -0,0 +1,117 @@
[net]
batch=1
subdivisions=1
height=224
width=224
channels=3
momentum=0.9
decay=0.0005
learning_rate=0.0005
policy=steps
steps=200,400,600,20000,30000
scales=2.5,2,2,.1,.1
max_batches = 40000
[convolutional]
filters=16
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=leaky
[connected]
output= 1470
activation=linear
[detection]
classes=20
coords=4
rescore=1
side=7
num=2
softmax=0
sqrt=1
jitter=.2
object_scale=1
noobject_scale=.5
class_scale=1
coord_scale=5

174
cfg/tiny.cfg

@ -0,0 +1,174 @@
[net]
# Train
batch=128
subdivisions=1
# Test
# batch=1
# subdivisions=1
height=224
width=224
channels=3
momentum=0.9
decay=0.0005
max_crop=320
learning_rate=0.1
policy=poly
power=4
max_batches=1600000
angle=7
hue=.1
saturation=.75
exposure=.75
aspect=.75
[convolutional]
batch_normalize=1
filters=16
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=16
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=16
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
filters=1000
size=1
stride=1
pad=1
activation=linear
[avgpool]
[softmax]
groups=1

157
cfg/vgg-16.cfg

@ -0,0 +1,157 @@
[net]
# Training
# batch=128
# subdivisions=4
# Testing
batch=1
subdivisions=1
height=256
width=256
channels=3
learning_rate=0.00001
momentum=0.9
decay=0.0005
[crop]
crop_height=224
crop_width=224
flip=1
exposure=1
saturation=1
angle=0
[convolutional]
filters=64
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=64
size=3
stride=1
pad=1
activation=relu
[maxpool]
size=2
stride=2
[convolutional]
filters=128
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=128
size=3
stride=1
pad=1
activation=relu
[maxpool]
size=2
stride=2
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
[maxpool]
size=2
stride=2
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[maxpool]
size=2
stride=2
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[maxpool]
size=2
stride=2
[connected]
output=4096
activation=relu
[dropout]
probability=.5
[connected]
output=4096
activation=relu
[dropout]
probability=.5
[connected]
output=1000
activation=linear
[softmax]
groups=1

121
cfg/vgg-conv.cfg

@ -0,0 +1,121 @@
[net]
batch=1
subdivisions=1
width=224
height=224
channels=3
learning_rate=0.00001
momentum=0.9
decay=0.0005
[convolutional]
filters=64
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=64
size=3
stride=1
pad=1
activation=relu
[maxpool]
size=2
stride=2
[convolutional]
filters=128
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=128
size=3
stride=1
pad=1
activation=relu
[maxpool]
size=2
stride=2
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
[maxpool]
size=2
stride=2
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[maxpool]
size=2
stride=2
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[maxpool]
size=2
stride=2

6
cfg/voc.data

@ -0,0 +1,6 @@
classes= 20
train = /home/pjreddie/data/voc/train.txt
valid = /home/pjreddie/data/voc/2007_test.txt
names = data/voc.names
backup = backup

41
cfg/writing.cfg

@ -0,0 +1,41 @@
[net]
batch=128
subdivisions=2
height=256
width=256
channels=3
learning_rate=0.00000001
momentum=0.9
decay=0.0005
seen=0
[convolutional]
filters=32
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=32
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=32
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=1
size=3
stride=1
pad=1
activation=logistic
[cost]

218
cfg/yolo9000.cfg

@ -0,0 +1,218 @@
[net]
# Testing
batch=1
subdivisions=1
# Training
# batch=64
# subdivisions=8
batch=1
subdivisions=1
height=544
width=544
channels=3
momentum=0.9
decay=0.0005
learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1
hue=.1
saturation=.75
exposure=.75
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=28269
size=1
stride=1
pad=1
activation=linear
[region]
anchors = 0.77871, 1.14074, 3.00525, 4.31277, 9.22725, 9.61974
bias_match=1
classes=9418
coords=4
num=3
softmax=1
jitter=.2
rescore=1
object_scale=5
noobject_scale=1
class_scale=1
coord_scale=1
thresh = .6
absolute=1
random=1
tree=data/9k.tree
map = data/coco9k.map

130
cfg/yolov1-tiny.cfg

@ -0,0 +1,130 @@
[net]
# Testing
batch=1
subdivisions=1
# Training
# batch=64
# subdivisions=8
height=448
width=448
channels=3
momentum=0.9
decay=0.0005
saturation=.75
exposure=.75
hue = .1
learning_rate=0.0005
policy=steps
steps=200,400,600,800,20000,30000
scales=2.5,2,2,2,.1,.1
max_batches = 40000
[convolutional]
batch_normalize=1
filters=16
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[connected]
output= 1470
activation=linear
[detection]
classes=20
coords=4
rescore=1
side=7
num=2
softmax=0
sqrt=1
jitter=.2
object_scale=1
noobject_scale=.5
class_scale=1
coord_scale=5

261
cfg/yolov1.cfg

@ -0,0 +1,261 @@
[net]
# Testing
batch=1
subdivisions=1
# Training
# batch=64
# subdivisions=8
height=448
width=448
channels=3
momentum=0.9
decay=0.0005
saturation=1.5
exposure=1.5
hue=.1
learning_rate=0.0005
policy=steps
steps=200,400,600,20000,30000
scales=2.5,2,2,.1,.1
max_batches = 40000
[convolutional]
batch_normalize=1
filters=64
size=7
stride=2
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=192
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
#######
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=2
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[local]
size=3
stride=1
pad=1
filters=256
activation=leaky
[dropout]
probability=.5
[connected]
output= 1715
activation=linear
[detection]
classes=20
coords=4
rescore=1
side=7
num=3
softmax=0
sqrt=1
jitter=.2
object_scale=1
noobject_scale=.5
class_scale=1
coord_scale=5

138
cfg/yolov2-tiny-voc.cfg

@ -0,0 +1,138 @@
[net]
# Testing
batch=1
subdivisions=1
# Training
# batch=64
# subdivisions=2
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
max_batches = 40200
policy=steps
steps=-1,100,20000,30000
scales=.1,10,.1,.1
[convolutional]
batch_normalize=1
filters=16
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=1
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
###########
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=125
activation=linear
[region]
anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
bias_match=1
classes=20
coords=4
num=5
softmax=1
jitter=.2
rescore=1
object_scale=5
noobject_scale=1
class_scale=1
coord_scale=1
absolute=1
thresh = .6
random=1

139
cfg/yolov2-tiny.cfg

@ -0,0 +1,139 @@
[net]
# Testing
batch=1
subdivisions=1
# Training
# batch=64
# subdivisions=2
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1
[convolutional]
batch_normalize=1
filters=16
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=1
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
###########
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=425
activation=linear
[region]
anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
bias_match=1
classes=80
coords=4
num=5
softmax=1
jitter=.2
rescore=0
object_scale=5
noobject_scale=1
class_scale=1
coord_scale=1
absolute=1
thresh = .6
random=1

258
cfg/yolov2-voc.cfg

@ -0,0 +1,258 @@
[net]
# Testing
batch=1
subdivisions=1
# Training
# batch=64
# subdivisions=8
height=416
width=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 80200
policy=steps
steps=40000,60000
scales=.1,.1
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
#######
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[route]
layers=-9
[convolutional]
batch_normalize=1
size=1
stride=1
pad=1
filters=64
activation=leaky
[reorg]
stride=2
[route]
layers=-1,-4
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=125
activation=linear
[region]
anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071
bias_match=1
classes=20
coords=4
num=5
softmax=1
jitter=.3
rescore=1
object_scale=5
noobject_scale=1
class_scale=1
coord_scale=1
absolute=1
thresh = .6
random=1

258
cfg/yolov2.cfg

@ -0,0 +1,258 @@
[net]
# Testing
batch=1
subdivisions=1
# Training
# batch=64
# subdivisions=8
width=608
height=608
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
#######
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[route]
layers=-9
[convolutional]
batch_normalize=1
size=1
stride=1
pad=1
filters=64
activation=leaky
[reorg]
stride=2
[route]
layers=-1,-4
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=425
activation=linear
[region]
anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
bias_match=1
classes=80
coords=4
num=5
softmax=1
jitter=.3
rescore=1
object_scale=5
noobject_scale=1
class_scale=1
coord_scale=1
absolute=1
thresh = .6
random=1

789
cfg/yolov3-openimages.cfg

@ -0,0 +1,789 @@
[net]
# Testing
batch=1
subdivisions=1
# Training
batch=64
subdivisions=16
width=608
height=608
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=5000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
# Downsample
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
######################
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=1818
activation=linear
[yolo]
mask = 6,7,8
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=601
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 61
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=1818
activation=linear
[yolo]
mask = 3,4,5
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=601
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 36
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=1818
activation=linear
[yolo]
mask = 0,1,2
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=601
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1

822
cfg/yolov3-spp.cfg

@ -0,0 +1,822 @@
[net]
# Testing
batch=1
subdivisions=1
# Training
# batch=64
# subdivisions=16
width=608
height=608
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
# Downsample
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
######################
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
### SPP ###
[maxpool]
stride=1
size=5
[route]
layers=-2
[maxpool]
stride=1
size=9
[route]
layers=-4
[maxpool]
stride=1
size=13
[route]
layers=-1,-3,-5,-6
### End SPP ###
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear
[yolo]
mask = 6,7,8
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=80
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 61
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear
[yolo]
mask = 3,4,5
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=80
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 36
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear
[yolo]
mask = 0,1,2
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=80
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1

182
cfg/yolov3-tiny.cfg

@ -0,0 +1,182 @@
[net]
# Testing
batch=1
subdivisions=1
# Training
# batch=64
# subdivisions=2
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1
[convolutional]
batch_normalize=1
filters=16
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=1
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
###########
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear
[yolo]
mask = 3,4,5
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
classes=80
num=6
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 8
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear
[yolo]
mask = 0,1,2
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
classes=80
num=6
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1

785
cfg/yolov3-voc.cfg

@ -0,0 +1,785 @@
[net]
# Testing
batch=1
subdivisions=1
# Training
# batch=64
# subdivisions=16
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 50200
policy=steps
steps=40000,45000
scales=.1,.1
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
# Downsample
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
######################
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=75
activation=linear
[yolo]
mask = 6,7,8
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=20
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 61
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=75
activation=linear
[yolo]
mask = 3,4,5
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=20
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 36
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=75
activation=linear
[yolo]
mask = 0,1,2
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=20
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=1

789
cfg/yolov3.cfg

@ -0,0 +1,789 @@
[net]
# Testing
# batch=1
# subdivisions=1
# Training
batch=64
subdivisions=16
width=608
height=608
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
# Downsample
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
######################
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear
[yolo]
mask = 6,7,8
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=80
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 61
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear
[yolo]
mask = 3,4,5
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=80
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 36
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear
[yolo]
mask = 0,1,2
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=80
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1

9418
data/9k.labels

File diff suppressed because it is too large Load Diff

9418
data/9k.names

File diff suppressed because it is too large Load Diff

9418
data/9k.tree

File diff suppressed because it is too large Load Diff

80
data/coco.names

@ -0,0 +1,80 @@
person
bicycle
car
motorbike
aeroplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
sofa
pottedplant
bed
diningtable
toilet
tvmonitor
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush

80
data/coco9k.map

@ -0,0 +1,80 @@
5177
3768
3802
3800
4107
4072
4071
3797
4097
2645
5150
2644
3257
2523
6527
6866
6912
7342
7255
7271
7217
6858
7343
7233
3704
4374
3641
5001
3899
2999
2631
5141
2015
1133
1935
1930
5144
5143
2371
3916
3745
3640
4749
4736
4735
3678
58
42
771
81
152
141
786
700
218
791
2518
2521
3637
2458
2505
2519
3499
2837
3503
2597
3430
2080
5103
5111
5102
3013
5096
1102
3218
4010
2266
1127
5122
2360

BIN
data/dog.jpg

Binary file not shown.

After

Width:  |  Height:  |  Size: 160 KiB

BIN
data/eagle.jpg

Binary file not shown.

After

Width:  |  Height:  |  Size: 139 KiB

BIN
data/giraffe.jpg

Binary file not shown.

After

Width:  |  Height:  |  Size: 374 KiB

3
data/goal.txt

@ -0,0 +1,3 @@
+++++
val_eq (Val.add (Val.add (r3 PC) Vone) Vone) (Val.add (x2 PC) Vone)
*****

BIN
data/horses.jpg

Binary file not shown.

After

Width:  |  Height:  |  Size: 130 KiB

21842
data/imagenet.labels.list

File diff suppressed because it is too large Load Diff

21842
data/imagenet.shortnames.list

File diff suppressed because it is too large Load Diff

200
data/inet9k.map

@ -0,0 +1,200 @@
2687
4107
8407
7254
42
6797
127
2268
2442
3704
260
1970
58
4443
2661
2043
2039
4858
4007
6858
8408
166
2523
3768
4347
6527
2446
5005
3274
3678
4918
709
4072
8428
7223
2251
3802
3848
7271
2677
8267
2849
2518
2738
3746
5105
3430
3503
2249
1841
2032
2358
122
3984
4865
3246
5095
6912
6878
8467
2741
1973
3057
7217
1872
44
2452
3637
2704
6917
2715
6734
2325
6864
6677
2035
1949
338
2664
5122
1844
784
2223
7188
2719
2670
4830
158
4818
7228
1965
7342
786
2095
8281
8258
7406
3915
8382
2437
2837
82
6871
1876
7447
8285
5007
2740
3463
5103
3755
4910
6809
3800
118
3396
3092
2709
81
7105
4036
2366
1846
5177
2684
64
2041
3919
700
3724
1742
39
807
7184
2256
235
2778
2996
2030
3714
7167
2369
6705
6861
5096
2597
2166
2036
3228
3747
2711
8300
2226
7153
7255
2631
7109
8242
7445
3776
3803
3690
2025
2521
2316
7190
8249
3352
2639
2887
100
4219
3344
5008
7224
3351
2434
2074
2034
8304
5004
6868
5102
2645
4071
2716
2717
7420
3499
3763
5084
2676
2046
5107
5097
3944
4097
7132
3956
7343

BIN
data/kite.jpg

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 MiB

BIN
data/labels/100_0.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 320 B

BIN
data/labels/100_1.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 377 B

BIN
data/labels/100_2.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 451 B

BIN
data/labels/100_3.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 508 B

BIN
data/labels/100_4.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 577 B

BIN
data/labels/100_5.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 631 B

BIN
data/labels/100_6.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 697 B

BIN
data/labels/100_7.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 753 B

BIN
data/labels/101_0.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 321 B

BIN
data/labels/101_1.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 388 B

BIN
data/labels/101_2.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 458 B

BIN
data/labels/101_3.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 514 B

BIN
data/labels/101_4.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 581 B

BIN
data/labels/101_5.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 654 B

BIN
data/labels/101_6.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 726 B

BIN
data/labels/101_7.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 804 B

BIN
data/labels/102_0.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 305 B

BIN
data/labels/102_1.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 340 B

BIN
data/labels/102_2.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 354 B

BIN
data/labels/102_3.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 371 B

BIN
data/labels/102_4.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 398 B

BIN
data/labels/102_5.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 411 B

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save