You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
415 lines
14 KiB
415 lines
14 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_FEATURE_HPP__ |
|
#define __OPENCV_FEATURE_HPP__ |
|
|
|
#include "opencv2/core.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include <iostream> |
|
#include <string> |
|
#include <time.h> |
|
|
|
/* |
|
* TODO This implementation is based on apps/traincascade/ |
|
* TODO Changed CvHaarEvaluator based on ADABOOSTING implementation (Grabner et al.) |
|
*/ |
|
|
|
namespace cv |
|
{ |
|
|
|
//! @addtogroup tracking |
|
//! @{ |
|
|
|
#define FEATURES "features" |
|
|
|
#define CC_FEATURES FEATURES |
|
#define CC_FEATURE_PARAMS "featureParams" |
|
#define CC_MAX_CAT_COUNT "maxCatCount" |
|
#define CC_FEATURE_SIZE "featSize" |
|
#define CC_NUM_FEATURES "numFeat" |
|
#define CC_ISINTEGRAL "isIntegral" |
|
#define CC_RECTS "rects" |
|
#define CC_TILTED "tilted" |
|
#define CC_RECT "rect" |
|
|
|
#define LBPF_NAME "lbpFeatureParams" |
|
#define HOGF_NAME "HOGFeatureParams" |
|
#define HFP_NAME "haarFeatureParams" |
|
|
|
#define CV_HAAR_FEATURE_MAX 3 |
|
#define N_BINS 9 |
|
#define N_CELLS 4 |
|
|
|
#define CV_SUM_OFFSETS( p0, p1, p2, p3, rect, step ) \ |
|
/* (x, y) */ \ |
|
(p0) = (rect).x + (step) * (rect).y; \ |
|
/* (x + w, y) */ \ |
|
(p1) = (rect).x + (rect).width + (step) * (rect).y; \ |
|
/* (x + w, y) */ \ |
|
(p2) = (rect).x + (step) * ((rect).y + (rect).height); \ |
|
/* (x + w, y + h) */ \ |
|
(p3) = (rect).x + (rect).width + (step) * ((rect).y + (rect).height); |
|
|
|
#define CV_TILTED_OFFSETS( p0, p1, p2, p3, rect, step ) \ |
|
/* (x, y) */ \ |
|
(p0) = (rect).x + (step) * (rect).y; \ |
|
/* (x - h, y + h) */ \ |
|
(p1) = (rect).x - (rect).height + (step) * ((rect).y + (rect).height);\ |
|
/* (x + w, y + w) */ \ |
|
(p2) = (rect).x + (rect).width + (step) * ((rect).y + (rect).width); \ |
|
/* (x + w - h, y + w + h) */ \ |
|
(p3) = (rect).x + (rect).width - (rect).height \ |
|
+ (step) * ((rect).y + (rect).width + (rect).height); |
|
|
|
float calcNormFactor( const Mat& sum, const Mat& sqSum ); |
|
|
|
template<class Feature> |
|
void _writeFeatures( const std::vector<Feature> features, FileStorage &fs, const Mat& featureMap ) |
|
{ |
|
fs << FEATURES << "["; |
|
const Mat_<int>& featureMap_ = (const Mat_<int>&) featureMap; |
|
for ( int fi = 0; fi < featureMap.cols; fi++ ) |
|
if( featureMap_( 0, fi ) >= 0 ) |
|
{ |
|
fs << "{"; |
|
features[fi].write( fs ); |
|
fs << "}"; |
|
} |
|
fs << "]"; |
|
} |
|
|
|
class CvParams |
|
{ |
|
public: |
|
CvParams(); |
|
virtual ~CvParams() |
|
{ |
|
} |
|
// from|to file |
|
virtual void write( FileStorage &fs ) const = 0; |
|
virtual bool read( const FileNode &node ) = 0; |
|
// from|to screen |
|
virtual void printDefaults() const; |
|
virtual void printAttrs() const; |
|
virtual bool scanAttr( const std::string prmName, const std::string val ); |
|
std::string name; |
|
}; |
|
|
|
class CvFeatureParams : public CvParams |
|
{ |
|
public: |
|
enum |
|
{ |
|
HAAR = 0, |
|
LBP = 1, |
|
HOG = 2 |
|
}; |
|
CvFeatureParams(); |
|
virtual void init( const CvFeatureParams& fp ); |
|
virtual void write( FileStorage &fs ) const CV_OVERRIDE; |
|
virtual bool read( const FileNode &node ) CV_OVERRIDE; |
|
static Ptr<CvFeatureParams> create( int featureType ); |
|
int maxCatCount; // 0 in case of numerical features |
|
int featSize; // 1 in case of simple features (HAAR, LBP) and N_BINS(9)*N_CELLS(4) in case of Dalal's HOG features |
|
int numFeatures; |
|
}; |
|
|
|
class CvFeatureEvaluator |
|
{ |
|
public: |
|
virtual ~CvFeatureEvaluator() |
|
{ |
|
} |
|
virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ); |
|
virtual void setImage( const Mat& img, uchar clsLabel, int idx ); |
|
virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const = 0; |
|
virtual float operator()( int featureIdx, int sampleIdx ) = 0; |
|
static Ptr<CvFeatureEvaluator> create( int type ); |
|
|
|
int getNumFeatures() const |
|
{ |
|
return numFeatures; |
|
} |
|
int getMaxCatCount() const |
|
{ |
|
return featureParams->maxCatCount; |
|
} |
|
int getFeatureSize() const |
|
{ |
|
return featureParams->featSize; |
|
} |
|
const Mat& getCls() const |
|
{ |
|
return cls; |
|
} |
|
float getCls( int si ) const |
|
{ |
|
return cls.at<float>( si, 0 ); |
|
} |
|
protected: |
|
virtual void generateFeatures() = 0; |
|
|
|
int npos, nneg; |
|
int numFeatures; |
|
Size winSize; |
|
CvFeatureParams *featureParams; |
|
Mat cls; |
|
}; |
|
|
|
class CvHaarFeatureParams : public CvFeatureParams |
|
{ |
|
public: |
|
|
|
CvHaarFeatureParams(); |
|
|
|
virtual void init( const CvFeatureParams& fp ) CV_OVERRIDE; |
|
virtual void write( FileStorage &fs ) const CV_OVERRIDE; |
|
virtual bool read( const FileNode &node ) CV_OVERRIDE; |
|
|
|
virtual void printDefaults() const CV_OVERRIDE; |
|
virtual void printAttrs() const CV_OVERRIDE; |
|
virtual bool scanAttr( const std::string prm, const std::string val ) CV_OVERRIDE; |
|
|
|
bool isIntegral; |
|
}; |
|
|
|
class CvHaarEvaluator : public CvFeatureEvaluator |
|
{ |
|
public: |
|
|
|
class FeatureHaar |
|
{ |
|
|
|
public: |
|
|
|
FeatureHaar( Size patchSize ); |
|
bool eval( const Mat& image, Rect ROI, float* result ) const; |
|
int getNumAreas(); |
|
const std::vector<float>& getWeights() const; |
|
const std::vector<Rect>& getAreas() const; |
|
void write( FileStorage ) const |
|
{ |
|
} |
|
; |
|
float getInitMean() const; |
|
float getInitSigma() const; |
|
|
|
private: |
|
int m_type; |
|
int m_numAreas; |
|
std::vector<float> m_weights; |
|
float m_initMean; |
|
float m_initSigma; |
|
void generateRandomFeature( Size imageSize ); |
|
float getSum( const Mat& image, Rect imgROI ) const; |
|
std::vector<Rect> m_areas; // areas within the patch over which to compute the feature |
|
cv::Size m_initSize; // size of the patch used during training |
|
cv::Size m_curSize; // size of the patches currently under investigation |
|
float m_scaleFactorHeight; // scaling factor in vertical direction |
|
float m_scaleFactorWidth; // scaling factor in horizontal direction |
|
std::vector<Rect> m_scaleAreas; // areas after scaling |
|
std::vector<float> m_scaleWeights; // weights after scaling |
|
|
|
}; |
|
|
|
virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ) CV_OVERRIDE; |
|
virtual void setImage( const Mat& img, uchar clsLabel = 0, int idx = 1 ) CV_OVERRIDE; |
|
virtual float operator()( int featureIdx, int sampleIdx ) CV_OVERRIDE; |
|
virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const CV_OVERRIDE; |
|
void writeFeature( FileStorage &fs ) const; // for old file format |
|
const std::vector<CvHaarEvaluator::FeatureHaar>& getFeatures() const; |
|
inline CvHaarEvaluator::FeatureHaar& getFeatures( int idx ) |
|
{ |
|
return features[idx]; |
|
} |
|
void setWinSize( Size patchSize ); |
|
Size setWinSize() const; |
|
virtual void generateFeatures() CV_OVERRIDE; |
|
|
|
/** |
|
* TODO new method |
|
* \brief Overload the original generateFeatures in order to limit the number of the features |
|
* @param numFeatures Number of the features |
|
*/ |
|
|
|
virtual void generateFeatures( int numFeatures ); |
|
|
|
protected: |
|
bool isIntegral; |
|
|
|
/* TODO Added from MIL implementation */ |
|
Mat _ii_img; |
|
void compute_integral( const cv::Mat & img, std::vector<cv::Mat_<float> > & ii_imgs ) |
|
{ |
|
Mat ii_img; |
|
integral( img, ii_img, CV_32F ); |
|
split( ii_img, ii_imgs ); |
|
} |
|
|
|
std::vector<FeatureHaar> features; |
|
Mat sum; /* sum images (each row represents image) */ |
|
}; |
|
|
|
struct CvHOGFeatureParams : public CvFeatureParams |
|
{ |
|
CvHOGFeatureParams(); |
|
}; |
|
|
|
class CvHOGEvaluator : public CvFeatureEvaluator |
|
{ |
|
public: |
|
virtual ~CvHOGEvaluator() |
|
{ |
|
} |
|
virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ) CV_OVERRIDE; |
|
virtual void setImage( const Mat& img, uchar clsLabel, int idx ) CV_OVERRIDE; |
|
virtual float operator()( int varIdx, int sampleIdx ) CV_OVERRIDE; |
|
virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const CV_OVERRIDE; |
|
protected: |
|
virtual void generateFeatures() CV_OVERRIDE; |
|
virtual void integralHistogram( const Mat &img, std::vector<Mat> &histogram, Mat &norm, int nbins ) const; |
|
class Feature |
|
{ |
|
public: |
|
Feature(); |
|
Feature( int offset, int x, int y, int cellW, int cellH ); |
|
float calc( const std::vector<Mat> &_hists, const Mat &_normSum, size_t y, int featComponent ) const; |
|
void write( FileStorage &fs ) const; |
|
void write( FileStorage &fs, int varIdx ) const; |
|
|
|
Rect rect[N_CELLS]; //cells |
|
|
|
struct |
|
{ |
|
int p0, p1, p2, p3; |
|
} fastRect[N_CELLS]; |
|
}; |
|
std::vector<Feature> features; |
|
|
|
Mat normSum; //for nomalization calculation (L1 or L2) |
|
std::vector<Mat> hist; |
|
}; |
|
|
|
inline float CvHOGEvaluator::operator()( int varIdx, int sampleIdx ) |
|
{ |
|
int featureIdx = varIdx / ( N_BINS * N_CELLS ); |
|
int componentIdx = varIdx % ( N_BINS * N_CELLS ); |
|
//return features[featureIdx].calc( hist, sampleIdx, componentIdx); |
|
return features[featureIdx].calc( hist, normSum, sampleIdx, componentIdx ); |
|
} |
|
|
|
inline float CvHOGEvaluator::Feature::calc( const std::vector<Mat>& _hists, const Mat& _normSum, size_t y, int featComponent ) const |
|
{ |
|
float normFactor; |
|
float res; |
|
|
|
int binIdx = featComponent % N_BINS; |
|
int cellIdx = featComponent / N_BINS; |
|
|
|
const float *phist = _hists[binIdx].ptr<float>( (int) y ); |
|
res = phist[fastRect[cellIdx].p0] - phist[fastRect[cellIdx].p1] - phist[fastRect[cellIdx].p2] + phist[fastRect[cellIdx].p3]; |
|
|
|
const float *pnormSum = _normSum.ptr<float>( (int) y ); |
|
normFactor = (float) ( pnormSum[fastRect[0].p0] - pnormSum[fastRect[1].p1] - pnormSum[fastRect[2].p2] + pnormSum[fastRect[3].p3] ); |
|
res = ( res > 0.001f ) ? ( res / ( normFactor + 0.001f ) ) : 0.f; //for cutting negative values, which apper due to floating precision |
|
|
|
return res; |
|
} |
|
|
|
struct CvLBPFeatureParams : CvFeatureParams |
|
{ |
|
CvLBPFeatureParams(); |
|
|
|
}; |
|
|
|
class CvLBPEvaluator : public CvFeatureEvaluator |
|
{ |
|
public: |
|
virtual ~CvLBPEvaluator() CV_OVERRIDE |
|
{ |
|
} |
|
virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ) CV_OVERRIDE; |
|
virtual void setImage( const Mat& img, uchar clsLabel, int idx ) CV_OVERRIDE; |
|
virtual float operator()( int featureIdx, int sampleIdx ) CV_OVERRIDE |
|
{ |
|
return (float) features[featureIdx].calc( sum, sampleIdx ); |
|
} |
|
virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const CV_OVERRIDE; |
|
protected: |
|
virtual void generateFeatures() CV_OVERRIDE; |
|
|
|
class Feature |
|
{ |
|
public: |
|
Feature(); |
|
Feature( int offset, int x, int y, int _block_w, int _block_h ); |
|
uchar calc( const Mat& _sum, size_t y ) const; |
|
void write( FileStorage &fs ) const; |
|
|
|
Rect rect; |
|
int p[16]; |
|
}; |
|
std::vector<Feature> features; |
|
|
|
Mat sum; |
|
}; |
|
|
|
inline uchar CvLBPEvaluator::Feature::calc( const Mat &_sum, size_t y ) const |
|
{ |
|
const int* psum = _sum.ptr<int>( (int) y ); |
|
int cval = psum[p[5]] - psum[p[6]] - psum[p[9]] + psum[p[10]]; |
|
|
|
return (uchar) ( ( psum[p[0]] - psum[p[1]] - psum[p[4]] + psum[p[5]] >= cval ? 128 : 0 ) | // 0 |
|
( psum[p[1]] - psum[p[2]] - psum[p[5]] + psum[p[6]] >= cval ? 64 : 0 ) | // 1 |
|
( psum[p[2]] - psum[p[3]] - psum[p[6]] + psum[p[7]] >= cval ? 32 : 0 ) | // 2 |
|
( psum[p[6]] - psum[p[7]] - psum[p[10]] + psum[p[11]] >= cval ? 16 : 0 ) | // 5 |
|
( psum[p[10]] - psum[p[11]] - psum[p[14]] + psum[p[15]] >= cval ? 8 : 0 ) | // 8 |
|
( psum[p[9]] - psum[p[10]] - psum[p[13]] + psum[p[14]] >= cval ? 4 : 0 ) | // 7 |
|
( psum[p[8]] - psum[p[9]] - psum[p[12]] + psum[p[13]] >= cval ? 2 : 0 ) | // 6 |
|
( psum[p[4]] - psum[p[5]] - psum[p[8]] + psum[p[9]] >= cval ? 1 : 0 ) ); // 3 |
|
} |
|
|
|
//! @} |
|
|
|
} /* namespace cv */ |
|
|
|
#endif
|
|
|