You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
379 lines
13 KiB
379 lines
13 KiB
/* |
|
By downloading, copying, installing or using the software you agree to this |
|
license. If you do not agree to this license, do not download, install, |
|
copy or use the software. |
|
|
|
|
|
License Agreement |
|
For Open Source Computer Vision Library |
|
(3-clause BSD License) |
|
|
|
Copyright (C) 2016, OpenCV Foundation, all rights reserved. |
|
Third party copyrights are property of their respective owners. |
|
|
|
Redistribution and use in source and binary forms, with or without modification, |
|
are permitted provided that the following conditions are met: |
|
|
|
* Redistributions of source code must retain the above copyright notice, |
|
this list of conditions and the following disclaimer. |
|
|
|
* Redistributions in binary form must reproduce the above copyright notice, |
|
this list of conditions and the following disclaimer in the documentation |
|
and/or other materials provided with the distribution. |
|
|
|
* Neither the names of the copyright holders nor the names of the contributors |
|
may be used to endorse or promote products derived from this software |
|
without specific prior written permission. |
|
|
|
This software is provided by the copyright holders and contributors "as is" and |
|
any express or implied warranties, including, but not limited to, the implied |
|
warranties of merchantability and fitness for a particular purpose are |
|
disclaimed. In no event shall copyright holders or contributors be liable for |
|
any direct, indirect, incidental, special, exemplary, or consequential damages |
|
(including, but not limited to, procurement of substitute goods or services; |
|
loss of use, data, or profits; or business interruption) however caused |
|
and on any theory of liability, whether in contract, strict liability, |
|
or tort (including negligence or otherwise) arising in any way out of |
|
the use of this software, even if advised of the possibility of such damage. |
|
*/ |
|
|
|
/** |
|
* @file sparse_matching_gpc.hpp |
|
* @author Vladislav Samsonov <vvladxx@gmail.com> |
|
* @brief Implementation of the Global Patch Collider. |
|
* |
|
* Implementation of the Global Patch Collider algorithm from the following paper: |
|
* http://research.microsoft.com/en-us/um/people/pkohli/papers/wfrik_cvpr2016.pdf |
|
* |
|
* @cite Wang_2016_CVPR |
|
*/ |
|
|
|
#ifndef __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__ |
|
#define __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__ |
|
|
|
#include "opencv2/core.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
|
|
namespace cv |
|
{ |
|
namespace optflow |
|
{ |
|
|
|
//! @addtogroup optflow |
|
//! @{ |
|
|
|
struct CV_EXPORTS_W GPCPatchDescriptor |
|
{ |
|
static const unsigned nFeatures = 18; //!< number of features in a patch descriptor |
|
Vec< double, nFeatures > feature; |
|
|
|
double dot( const Vec< double, nFeatures > &coef ) const; |
|
|
|
void markAsSeparated() { feature[0] = std::numeric_limits< double >::quiet_NaN(); } |
|
|
|
bool isSeparated() const { return cvIsNaN( feature[0] ) != 0; } |
|
}; |
|
|
|
struct CV_EXPORTS_W GPCPatchSample |
|
{ |
|
GPCPatchDescriptor ref; |
|
GPCPatchDescriptor pos; |
|
GPCPatchDescriptor neg; |
|
|
|
void getDirections( bool &refdir, bool &posdir, bool &negdir, const Vec< double, GPCPatchDescriptor::nFeatures > &coef, double rhs ) const; |
|
}; |
|
|
|
typedef std::vector< GPCPatchSample > GPCSamplesVector; |
|
|
|
/** @brief Descriptor types for the Global Patch Collider. |
|
*/ |
|
enum GPCDescType |
|
{ |
|
GPC_DESCRIPTOR_DCT = 0, //!< Better quality but slow |
|
GPC_DESCRIPTOR_WHT //!< Worse quality but much faster |
|
}; |
|
|
|
/** @brief Class encapsulating training samples. |
|
*/ |
|
class CV_EXPORTS_W GPCTrainingSamples |
|
{ |
|
private: |
|
GPCSamplesVector samples; |
|
int descriptorType; |
|
|
|
public: |
|
/** @brief This function can be used to extract samples from a pair of images and a ground truth flow. |
|
* Sizes of all the provided vectors must be equal. |
|
*/ |
|
static Ptr< GPCTrainingSamples > create( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo, |
|
const std::vector< String > >, int descriptorType ); |
|
|
|
static Ptr< GPCTrainingSamples > create( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, InputArrayOfArrays gt, |
|
int descriptorType ); |
|
|
|
size_t size() const { return samples.size(); } |
|
|
|
int type() const { return descriptorType; } |
|
|
|
operator GPCSamplesVector &() { return samples; } |
|
}; |
|
|
|
/** @brief Class encapsulating training parameters. |
|
*/ |
|
struct GPCTrainingParams |
|
{ |
|
unsigned maxTreeDepth; //!< Maximum tree depth to stop partitioning. |
|
int minNumberOfSamples; //!< Minimum number of samples in the node to stop partitioning. |
|
int descriptorType; //!< Type of descriptors to use. |
|
bool printProgress; //!< Print progress to stdout. |
|
|
|
GPCTrainingParams( unsigned _maxTreeDepth = 20, int _minNumberOfSamples = 3, GPCDescType _descriptorType = GPC_DESCRIPTOR_DCT, |
|
bool _printProgress = true ) |
|
: maxTreeDepth( _maxTreeDepth ), minNumberOfSamples( _minNumberOfSamples ), descriptorType( _descriptorType ), |
|
printProgress( _printProgress ) |
|
{ |
|
CV_Assert( check() ); |
|
} |
|
|
|
GPCTrainingParams( const GPCTrainingParams ¶ms ) |
|
: maxTreeDepth( params.maxTreeDepth ), minNumberOfSamples( params.minNumberOfSamples ), descriptorType( params.descriptorType ), |
|
printProgress( params.printProgress ) |
|
{ |
|
CV_Assert( check() ); |
|
} |
|
|
|
bool check() const { return maxTreeDepth > 1 && minNumberOfSamples > 1; } |
|
}; |
|
|
|
/** @brief Class encapsulating matching parameters. |
|
*/ |
|
struct GPCMatchingParams |
|
{ |
|
bool useOpenCL; //!< Whether to use OpenCL to speed up the matching. |
|
|
|
GPCMatchingParams( bool _useOpenCL = false ) : useOpenCL( _useOpenCL ) {} |
|
|
|
GPCMatchingParams( const GPCMatchingParams ¶ms ) : useOpenCL( params.useOpenCL ) {} |
|
}; |
|
|
|
/** @brief Class for individual tree. |
|
*/ |
|
class CV_EXPORTS_W GPCTree : public Algorithm |
|
{ |
|
public: |
|
struct Node |
|
{ |
|
Vec< double, GPCPatchDescriptor::nFeatures > coef; //!< Hyperplane coefficients |
|
double rhs; //!< Bias term of the hyperplane |
|
unsigned left; |
|
unsigned right; |
|
|
|
bool operator==( const Node &n ) const { return coef == n.coef && rhs == n.rhs && left == n.left && right == n.right; } |
|
}; |
|
|
|
private: |
|
typedef GPCSamplesVector::iterator SIter; |
|
|
|
std::vector< Node > nodes; |
|
GPCTrainingParams params; |
|
|
|
bool trainNode( size_t nodeId, SIter begin, SIter end, unsigned depth ); |
|
|
|
public: |
|
void train( GPCTrainingSamples &samples, const GPCTrainingParams params = GPCTrainingParams() ); |
|
|
|
void write( FileStorage &fs ) const CV_OVERRIDE; |
|
|
|
void read( const FileNode &fn ) CV_OVERRIDE; |
|
|
|
unsigned findLeafForPatch( const GPCPatchDescriptor &descr ) const; |
|
|
|
static Ptr< GPCTree > create() { return makePtr< GPCTree >(); } |
|
|
|
bool operator==( const GPCTree &t ) const { return nodes == t.nodes; } |
|
|
|
int getDescriptorType() const { return params.descriptorType; } |
|
}; |
|
|
|
template < int T > class GPCForest : public Algorithm |
|
{ |
|
private: |
|
struct Trail |
|
{ |
|
unsigned leaf[T]; //!< Inside which leaf of the tree 0..T the patch fell? |
|
Point2i coord; //!< Patch coordinates. |
|
|
|
bool operator==( const Trail &trail ) const { return memcmp( leaf, trail.leaf, sizeof( leaf ) ) == 0; } |
|
|
|
bool operator<( const Trail &trail ) const |
|
{ |
|
for ( int i = 0; i < T - 1; ++i ) |
|
if ( leaf[i] != trail.leaf[i] ) |
|
return leaf[i] < trail.leaf[i]; |
|
return leaf[T - 1] < trail.leaf[T - 1]; |
|
} |
|
}; |
|
|
|
class ParallelTrailsFilling : public ParallelLoopBody |
|
{ |
|
private: |
|
const GPCForest *forest; |
|
const std::vector< GPCPatchDescriptor > *descr; |
|
std::vector< Trail > *trails; |
|
|
|
ParallelTrailsFilling &operator=( const ParallelTrailsFilling & ); |
|
|
|
public: |
|
ParallelTrailsFilling( const GPCForest *_forest, const std::vector< GPCPatchDescriptor > *_descr, std::vector< Trail > *_trails ) |
|
: forest( _forest ), descr( _descr ), trails( _trails ){}; |
|
|
|
void operator()( const Range &range ) const CV_OVERRIDE |
|
{ |
|
for ( int t = range.start; t < range.end; ++t ) |
|
for ( size_t i = 0; i < descr->size(); ++i ) |
|
trails->at( i ).leaf[t] = forest->tree[t].findLeafForPatch( descr->at( i ) ); |
|
} |
|
}; |
|
|
|
GPCTree tree[T]; |
|
|
|
public: |
|
/** @brief Train the forest using one sample set for every tree. |
|
* Please, consider using the next method instead of this one for better quality. |
|
*/ |
|
void train( GPCTrainingSamples &samples, const GPCTrainingParams params = GPCTrainingParams() ) |
|
{ |
|
for ( int i = 0; i < T; ++i ) |
|
tree[i].train( samples, params ); |
|
} |
|
|
|
/** @brief Train the forest using individual samples for each tree. |
|
* It is generally better to use this instead of the first method. |
|
*/ |
|
void train( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo, const std::vector< String > >, |
|
const GPCTrainingParams params = GPCTrainingParams() ) |
|
{ |
|
for ( int i = 0; i < T; ++i ) |
|
{ |
|
Ptr< GPCTrainingSamples > samples = |
|
GPCTrainingSamples::create( imagesFrom, imagesTo, gt, params.descriptorType ); // Create training set for the tree |
|
tree[i].train( *samples, params ); |
|
} |
|
} |
|
|
|
void train( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, InputArrayOfArrays gt, |
|
const GPCTrainingParams params = GPCTrainingParams() ) |
|
{ |
|
for ( int i = 0; i < T; ++i ) |
|
{ |
|
Ptr< GPCTrainingSamples > samples = |
|
GPCTrainingSamples::create( imagesFrom, imagesTo, gt, params.descriptorType ); // Create training set for the tree |
|
tree[i].train( *samples, params ); |
|
} |
|
} |
|
|
|
void write( FileStorage &fs ) const CV_OVERRIDE |
|
{ |
|
fs << "ntrees" << T << "trees" |
|
<< "["; |
|
for ( int i = 0; i < T; ++i ) |
|
{ |
|
fs << "{"; |
|
tree[i].write( fs ); |
|
fs << "}"; |
|
} |
|
fs << "]"; |
|
} |
|
|
|
void read( const FileNode &fn ) CV_OVERRIDE |
|
{ |
|
CV_Assert( T <= (int)fn["ntrees"] ); |
|
FileNodeIterator it = fn["trees"].begin(); |
|
for ( int i = 0; i < T; ++i, ++it ) |
|
tree[i].read( *it ); |
|
} |
|
|
|
/** @brief Find correspondences between two images. |
|
* @param[in] imgFrom First image in a sequence. |
|
* @param[in] imgTo Second image in a sequence. |
|
* @param[out] corr Output vector with pairs of corresponding points. |
|
* @param[in] params Additional matching parameters for fine-tuning. |
|
*/ |
|
void findCorrespondences( InputArray imgFrom, InputArray imgTo, std::vector< std::pair< Point2i, Point2i > > &corr, |
|
const GPCMatchingParams params = GPCMatchingParams() ) const; |
|
|
|
static Ptr< GPCForest > create() { return makePtr< GPCForest >(); } |
|
}; |
|
|
|
class CV_EXPORTS_W GPCDetails |
|
{ |
|
public: |
|
static void dropOutliers( std::vector< std::pair< Point2i, Point2i > > &corr ); |
|
|
|
static void getAllDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescriptor > &descr, const GPCMatchingParams &mp, |
|
int type ); |
|
|
|
static void getCoordinatesFromIndex( size_t index, Size sz, int &x, int &y ); |
|
}; |
|
|
|
template < int T > |
|
void GPCForest< T >::findCorrespondences( InputArray imgFrom, InputArray imgTo, std::vector< std::pair< Point2i, Point2i > > &corr, |
|
const GPCMatchingParams params ) const |
|
{ |
|
CV_Assert( imgFrom.channels() == 3 ); |
|
CV_Assert( imgTo.channels() == 3 ); |
|
|
|
Mat from, to; |
|
imgFrom.getMat().convertTo( from, CV_32FC3 ); |
|
imgTo.getMat().convertTo( to, CV_32FC3 ); |
|
cvtColor( from, from, COLOR_BGR2YCrCb ); |
|
cvtColor( to, to, COLOR_BGR2YCrCb ); |
|
|
|
Mat fromCh[3], toCh[3]; |
|
split( from, fromCh ); |
|
split( to, toCh ); |
|
|
|
std::vector< GPCPatchDescriptor > descr; |
|
GPCDetails::getAllDescriptorsForImage( fromCh, descr, params, tree[0].getDescriptorType() ); |
|
std::vector< Trail > trailsFrom( descr.size() ), trailsTo( descr.size() ); |
|
|
|
for ( size_t i = 0; i < descr.size(); ++i ) |
|
GPCDetails::getCoordinatesFromIndex( i, from.size(), trailsFrom[i].coord.x, trailsFrom[i].coord.y ); |
|
parallel_for_( Range( 0, T ), ParallelTrailsFilling( this, &descr, &trailsFrom ) ); |
|
|
|
descr.clear(); |
|
GPCDetails::getAllDescriptorsForImage( toCh, descr, params, tree[0].getDescriptorType() ); |
|
|
|
for ( size_t i = 0; i < descr.size(); ++i ) |
|
GPCDetails::getCoordinatesFromIndex( i, to.size(), trailsTo[i].coord.x, trailsTo[i].coord.y ); |
|
parallel_for_( Range( 0, T ), ParallelTrailsFilling( this, &descr, &trailsTo ) ); |
|
|
|
std::sort( trailsFrom.begin(), trailsFrom.end() ); |
|
std::sort( trailsTo.begin(), trailsTo.end() ); |
|
|
|
for ( size_t i = 0; i < trailsFrom.size(); ++i ) |
|
{ |
|
bool uniq = true; |
|
while ( i + 1 < trailsFrom.size() && trailsFrom[i] == trailsFrom[i + 1] ) |
|
++i, uniq = false; |
|
if ( uniq ) |
|
{ |
|
typename std::vector< Trail >::const_iterator lb = std::lower_bound( trailsTo.begin(), trailsTo.end(), trailsFrom[i] ); |
|
if ( lb != trailsTo.end() && *lb == trailsFrom[i] && ( ( lb + 1 ) == trailsTo.end() || !( *lb == *( lb + 1 ) ) ) ) |
|
corr.push_back( std::make_pair( trailsFrom[i].coord, lb->coord ) ); |
|
} |
|
} |
|
|
|
GPCDetails::dropOutliers( corr ); |
|
} |
|
|
|
//! @} |
|
|
|
} // namespace optflow |
|
|
|
CV_EXPORTS void write( FileStorage &fs, const String &name, const optflow::GPCTree::Node &node ); |
|
|
|
CV_EXPORTS void read( const FileNode &fn, optflow::GPCTree::Node &node, optflow::GPCTree::Node ); |
|
} // namespace cv |
|
|
|
#endif
|
|
|