You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1799 lines
60 KiB
1799 lines
60 KiB
#include <stdio.h> |
|
#include <string.h> |
|
#include <stdlib.h> |
|
#include <assert.h> |
|
|
|
#include "activation_layer.h" |
|
#include "logistic_layer.h" |
|
#include "l2norm_layer.h" |
|
#include "activations.h" |
|
#include "avgpool_layer.h" |
|
#include "batchnorm_layer.h" |
|
#include "blas.h" |
|
#include "connected_layer.h" |
|
#include "deconvolutional_layer.h" |
|
#include "convolutional_layer.h" |
|
#include "cost_layer.h" |
|
#include "crnn_layer.h" |
|
#include "crop_layer.h" |
|
#include "detection_layer.h" |
|
#include "dropout_layer.h" |
|
#include "gru_layer.h" |
|
#include "list.h" |
|
#include "local_layer.h" |
|
#include "maxpool_layer.h" |
|
#include "normalization_layer.h" |
|
#include "option_list.h" |
|
#include "parser.h" |
|
#include "region_layer.h" |
|
#include "yolo_layer.h" |
|
#include "iseg_layer.h" |
|
#include "reorg_layer.h" |
|
#include "rnn_layer.h" |
|
#include "route_layer.h" |
|
#include "upsample_layer.h" |
|
#include "shortcut_layer.h" |
|
#include "softmax_layer.h" |
|
#include "lstm_layer.h" |
|
#include "utils.h" |
|
|
|
#include "cryptionPlus.h" |
|
#include "test_nnctrl_live.h" |
|
#include "structures.h" |
|
|
|
#include "setting.h" |
|
|
|
/* |
|
#ifdef GY_OS_AMBA |
|
typedef unsigned long long int uint64_t; |
|
#endif*/ |
|
|
|
typedef struct{ |
|
char *type; |
|
list *options; |
|
}section; |
|
|
|
list *read_cfg(char *filename); |
|
|
|
list *read_cfg_mem(char *filename, char* dataset_version) |
|
{ |
|
KeyExpansion(key, expandedKey); |
|
char DecryptFileData[MAX_SMALL_FILE_SIZE] = { 0 }; |
|
/*size_t descrypt_size = */AESDecryptFileToArray(filename, expandedKey, DecryptFileData, sizeof(DecryptFileData)); |
|
|
|
//printf("DecryptFileData=%s\n", DecryptFileData); |
|
|
|
char *token; |
|
char *line; |
|
int nu = 0; |
|
list *sections = make_list(); |
|
section *current = 0; |
|
char delim[] = "\n"; |
|
char *pLeft = NULL; |
|
|
|
token = strtok_modified(DecryptFileData, delim, &pLeft); |
|
|
|
//while ((line = fgetl(file)) != 0) |
|
while (token != NULL) |
|
{ |
|
line = malloc(strlen(token) + 1); |
|
strcpy(line, token); |
|
++nu; |
|
strip(line); |
|
switch (line[0]) { |
|
case '[': |
|
current = malloc(sizeof(section)); |
|
list_insert(sections, current); |
|
current->options = make_list(); |
|
current->type = line; |
|
break; |
|
case '#': |
|
if (strncmp(line, "#Version=", strlen("#Version=")) == 0) |
|
{ |
|
strcpy(dataset_version, line + strlen("#Version=")); |
|
if (line) { |
|
free(line); |
|
line = NULL; |
|
} |
|
} |
|
else |
|
if (line) { |
|
free(line); |
|
line = NULL; |
|
} |
|
break; |
|
case '\0': |
|
case ';': |
|
if (line) { |
|
free(line); |
|
line = NULL; |
|
} |
|
break; |
|
default: |
|
if (!read_option(line, current->options)) { |
|
fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line); |
|
if (line) { |
|
free(line); |
|
line = NULL; |
|
} |
|
} |
|
break; |
|
} |
|
token = strtok_modified(NULL, delim, &pLeft); |
|
} |
|
//fclose(file); |
|
return sections; |
|
} |
|
|
|
LAYER_TYPE string_to_layer_type(char * type) |
|
{ |
|
|
|
if (strcmp(type, "[shortcut]")==0) return SHORTCUT; |
|
if (strcmp(type, "[crop]")==0) return CROP; |
|
if (strcmp(type, "[cost]")==0) return COST; |
|
if (strcmp(type, "[detection]")==0) return DETECTION; |
|
if (strcmp(type, "[region]")==0) return REGION; |
|
if (strcmp(type, "[yolo]")==0) return YOLO; |
|
if (strcmp(type, "[iseg]")==0) return ISEG; |
|
if (strcmp(type, "[local]")==0) return LOCAL; |
|
if (strcmp(type, "[conv]")==0 |
|
|| strcmp(type, "[convolutional]")==0) return CONVOLUTIONAL; |
|
if (strcmp(type, "[deconv]")==0 |
|
|| strcmp(type, "[deconvolutional]")==0) return DECONVOLUTIONAL; |
|
if (strcmp(type, "[activation]")==0) return ACTIVE; |
|
if (strcmp(type, "[logistic]")==0) return LOGXENT; |
|
if (strcmp(type, "[l2norm]")==0) return L2NORM; |
|
if (strcmp(type, "[net]")==0 |
|
|| strcmp(type, "[network]")==0) return NETWORK; |
|
if (strcmp(type, "[crnn]")==0) return CRNN; |
|
if (strcmp(type, "[gru]")==0) return GRU; |
|
if (strcmp(type, "[lstm]") == 0) return LSTM; |
|
if (strcmp(type, "[rnn]")==0) return RNN; |
|
if (strcmp(type, "[conn]")==0 |
|
|| strcmp(type, "[connected]")==0) return CONNECTED; |
|
if (strcmp(type, "[max]")==0 |
|
|| strcmp(type, "[maxpool]")==0) return MAXPOOL; |
|
if (strcmp(type, "[reorg]")==0) return REORG; |
|
if (strcmp(type, "[avg]")==0 |
|
|| strcmp(type, "[avgpool]")==0) return AVGPOOL; |
|
if (strcmp(type, "[dropout]")==0) return DROPOUT; |
|
if (strcmp(type, "[lrn]")==0 |
|
|| strcmp(type, "[normalization]")==0) return NORMALIZATION; |
|
if (strcmp(type, "[batchnorm]")==0) return BATCHNORM; |
|
if (strcmp(type, "[soft]")==0 |
|
|| strcmp(type, "[softmax]")==0) return SOFTMAX; |
|
if (strcmp(type, "[route]")==0) return ROUTE; |
|
if (strcmp(type, "[upsample]")==0) return UPSAMPLE; |
|
return BLANK; |
|
} |
|
|
|
void free_section(section *s) |
|
{ |
|
if (s->type) { |
|
free(s->type); |
|
s->type = NULL; |
|
} |
|
node *n = s->options->front; |
|
while(n){ |
|
kvp *pair = (kvp *)n->val; |
|
if (pair->key) { |
|
free(pair->key); |
|
pair->key = NULL; |
|
} |
|
if (pair) { |
|
free(pair); |
|
pair = NULL; |
|
} |
|
node *next = n->next; |
|
if (n) { |
|
free(n); |
|
n = NULL; |
|
} |
|
n = next; |
|
} |
|
if (s->options) { |
|
free(s->options); |
|
s->options = NULL; |
|
} |
|
if (s) { |
|
free(s); |
|
s = NULL; |
|
} |
|
} |
|
|
|
void parse_data(char *data, float *a, int n) |
|
{ |
|
int i; |
|
if(!data) return; |
|
char *curr = data; |
|
char *next = data; |
|
int done = 0; |
|
for(i = 0; i < n && !done; ++i){ |
|
while(*++next !='\0' && *next != ','); |
|
if(*next == '\0') done = 1; |
|
*next = '\0'; |
|
sscanf(curr, "%g", &a[i]); |
|
curr = next+1; |
|
} |
|
} |
|
|
|
typedef struct size_params{ |
|
int batch; |
|
int inputs; |
|
int h; |
|
int w; |
|
int c; |
|
int index; |
|
int time_steps; |
|
network *net; |
|
} size_params; |
|
|
|
local_layer parse_local(list *options, size_params params) |
|
{ |
|
int n = option_find_int(options, "filters",1); |
|
int size = option_find_int(options, "size",1); |
|
int stride = option_find_int(options, "stride",1); |
|
int pad = option_find_int(options, "pad",0); |
|
char *activation_s = option_find_str(options, "activation", "logistic"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
int batch,h,w,c; |
|
h = params.h; |
|
w = params.w; |
|
c = params.c; |
|
batch=params.batch; |
|
if(!(h && w && c)) printf("Layer before local layer must output image.\n"); |
|
|
|
local_layer layer = make_local_layer(batch,h,w,c,n,size,stride,pad,activation); |
|
|
|
return layer; |
|
} |
|
|
|
layer parse_deconvolutional(list *options, size_params params) |
|
{ |
|
int n = option_find_int(options, "filters",1); |
|
int size = option_find_int(options, "size",1); |
|
int stride = option_find_int(options, "stride",1); |
|
|
|
char *activation_s = option_find_str(options, "activation", "logistic"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
int batch,h,w,c; |
|
h = params.h; |
|
w = params.w; |
|
c = params.c; |
|
batch=params.batch; |
|
if(!(h && w && c)) printf("Layer before deconvolutional layer must output image.\n"); |
|
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
|
int pad = option_find_int_quiet(options, "pad",0); |
|
int padding = option_find_int_quiet(options, "padding",0); |
|
if(pad) padding = size/2; |
|
|
|
layer l = make_deconvolutional_layer(batch,h,w,c,n,size,stride,padding, activation, batch_normalize, params.net->adam); |
|
|
|
return l; |
|
} |
|
|
|
|
|
convolutional_layer parse_convolutional(list *options, size_params params) |
|
{ |
|
int n = option_find_int(options, "filters",1); |
|
int size = option_find_int(options, "size",1); |
|
int stride = option_find_int(options, "stride",1); |
|
int pad = option_find_int_quiet(options, "pad",0); |
|
int padding = option_find_int_quiet(options, "padding",0); |
|
int groups = option_find_int_quiet(options, "groups", 1); |
|
if(pad) padding = size/2; |
|
|
|
char *activation_s = option_find_str(options, "activation", "logistic"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
int batch,h,w,c; |
|
h = params.h; |
|
w = params.w; |
|
c = params.c; |
|
batch=params.batch; |
|
if(!(h && w && c)) printf("Layer before convolutional layer must output image.\n"); |
|
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
|
int binary = option_find_int_quiet(options, "binary", 0); |
|
int xnor = option_find_int_quiet(options, "xnor", 0); |
|
|
|
convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,groups,size,stride,padding,activation, batch_normalize, binary, xnor, params.net->adam); |
|
layer.flipped = option_find_int_quiet(options, "flipped", 0); |
|
layer.dot = option_find_float_quiet(options, "dot", 0); |
|
|
|
if(params.net->adam) { |
|
layer.B1 = params.net->B1; |
|
layer.B2 = params.net->B2; |
|
layer.eps = params.net->eps; |
|
} |
|
|
|
return layer; |
|
} |
|
|
|
layer parse_crnn(list *options, size_params params) |
|
{ |
|
int output_filters = option_find_int(options, "output_filters",1); |
|
int hidden_filters = option_find_int(options, "hidden_filters",1); |
|
char *activation_s = option_find_str(options, "activation", "logistic"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
|
|
|
layer l = make_crnn_layer(params.batch, params.w, params.h, params.c, hidden_filters, output_filters, params.time_steps, activation, batch_normalize); |
|
|
|
l.shortcut = option_find_int_quiet(options, "shortcut", 0); |
|
|
|
return l; |
|
} |
|
|
|
layer parse_rnn(list *options, size_params params) |
|
{ |
|
int output = option_find_int(options, "output",1); |
|
char *activation_s = option_find_str(options, "activation", "logistic"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
|
|
|
layer l = make_rnn_layer(params.batch, params.inputs, output, params.time_steps, activation, batch_normalize, params.net->adam); |
|
|
|
l.shortcut = option_find_int_quiet(options, "shortcut", 0); |
|
|
|
return l; |
|
} |
|
|
|
layer parse_gru(list *options, size_params params) |
|
{ |
|
int output = option_find_int(options, "output",1); |
|
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
|
|
|
layer l = make_gru_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize, params.net->adam); |
|
l.tanh = option_find_int_quiet(options, "tanh", 0); |
|
|
|
return l; |
|
} |
|
|
|
layer parse_lstm(list *options, size_params params) |
|
{ |
|
int output = option_find_int(options, "output", 1); |
|
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
|
|
|
layer l = make_lstm_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize, params.net->adam); |
|
|
|
return l; |
|
} |
|
|
|
layer parse_connected(list *options, size_params params) |
|
{ |
|
int output = option_find_int(options, "output",1); |
|
char *activation_s = option_find_str(options, "activation", "logistic"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
|
|
|
layer l = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize, params.net->adam); |
|
return l; |
|
} |
|
|
|
layer parse_softmax(list *options, size_params params) |
|
{ |
|
int groups = option_find_int_quiet(options, "groups",1); |
|
layer l = make_softmax_layer(params.batch, params.inputs, groups); |
|
l.temperature = option_find_float_quiet(options, "temperature", 1); |
|
char *tree_file = option_find_str(options, "tree", 0); |
|
if (tree_file) l.softmax_tree = read_tree(tree_file); |
|
l.w = params.w; |
|
l.h = params.h; |
|
l.c = params.c; |
|
l.spatial = option_find_float_quiet(options, "spatial", 0); |
|
l.noloss = option_find_int_quiet(options, "noloss", 0); |
|
return l; |
|
} |
|
|
|
int *parse_yolo_mask(char *a, int *num) |
|
{ |
|
int *mask = 0; |
|
if(a){ |
|
int len = strlen(a); |
|
int n = 1; |
|
int i; |
|
for(i = 0; i < len; ++i){ |
|
if (a[i] == ',') ++n; |
|
} |
|
mask = calloc(n, sizeof(int)); |
|
for(i = 0; i < n; ++i){ |
|
int val = atoi(a); |
|
mask[i] = val; |
|
a = strchr(a, ',')+1; |
|
} |
|
*num = n; |
|
} |
|
return mask; |
|
} |
|
|
|
layer parse_yolo(list *options, size_params params) |
|
{ |
|
int classes = option_find_int(options, "classes", 20); |
|
int total = option_find_int(options, "num", 1); |
|
int num = total; |
|
|
|
char *a = option_find_str(options, "mask", 0); |
|
int *mask = parse_yolo_mask(a, &num); |
|
layer l = make_yolo_layer(params.batch, params.w, params.h, num, total, mask, classes); |
|
assert(l.outputs == params.inputs); |
|
|
|
l.max_boxes = option_find_int_quiet(options, "max",90); |
|
l.jitter = option_find_float(options, "jitter", .2); |
|
|
|
l.ignore_thresh = option_find_float(options, "ignore_thresh", .5); |
|
l.truth_thresh = option_find_float(options, "truth_thresh", 1); |
|
l.random = option_find_int_quiet(options, "random", 0); |
|
|
|
char *map_file = option_find_str(options, "map", 0); |
|
if (map_file) l.map = read_map(map_file); |
|
|
|
a = option_find_str(options, "anchors", 0); |
|
if(a){ |
|
int len = strlen(a); |
|
int n = 1; |
|
int i; |
|
for(i = 0; i < len; ++i){ |
|
if (a[i] == ',') ++n; |
|
} |
|
for(i = 0; i < n; ++i){ |
|
float bias = atof(a); |
|
l.biases[i] = bias; |
|
a = strchr(a, ',')+1; |
|
} |
|
} |
|
return l; |
|
} |
|
|
|
layer parse_iseg(list *options, size_params params) |
|
{ |
|
int classes = option_find_int(options, "classes", 20); |
|
int ids = option_find_int(options, "ids", 32); |
|
layer l = make_iseg_layer(params.batch, params.w, params.h, classes, ids); |
|
assert(l.outputs == params.inputs); |
|
return l; |
|
} |
|
|
|
layer parse_region(list *options, size_params params) |
|
{ |
|
int coords = option_find_int(options, "coords", 4); |
|
int classes = option_find_int(options, "classes", 20); |
|
int num = option_find_int(options, "num", 1); |
|
|
|
layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords); |
|
assert(l.outputs == params.inputs); |
|
|
|
l.log = option_find_int_quiet(options, "log", 0); |
|
l.sqrt = option_find_int_quiet(options, "sqrt", 0); |
|
|
|
l.softmax = option_find_int(options, "softmax", 0); |
|
l.background = option_find_int_quiet(options, "background", 0); |
|
l.max_boxes = option_find_int_quiet(options, "max",30); |
|
l.jitter = option_find_float(options, "jitter", .2); |
|
l.rescore = option_find_int_quiet(options, "rescore",0); |
|
|
|
l.thresh = option_find_float(options, "thresh", .5); |
|
l.classfix = option_find_int_quiet(options, "classfix", 0); |
|
l.absolute = option_find_int_quiet(options, "absolute", 0); |
|
l.random = option_find_int_quiet(options, "random", 0); |
|
|
|
l.coord_scale = option_find_float(options, "coord_scale", 1); |
|
l.object_scale = option_find_float(options, "object_scale", 1); |
|
l.noobject_scale = option_find_float(options, "noobject_scale", 1); |
|
l.mask_scale = option_find_float(options, "mask_scale", 1); |
|
l.class_scale = option_find_float(options, "class_scale", 1); |
|
l.bias_match = option_find_int_quiet(options, "bias_match",0); |
|
|
|
char *tree_file = option_find_str(options, "tree", 0); |
|
if (tree_file) l.softmax_tree = read_tree(tree_file); |
|
char *map_file = option_find_str(options, "map", 0); |
|
if (map_file) l.map = read_map(map_file); |
|
|
|
char *a = option_find_str(options, "anchors", 0); |
|
if(a){ |
|
int len = strlen(a); |
|
int n = 1; |
|
int i; |
|
for(i = 0; i < len; ++i){ |
|
if (a[i] == ',') ++n; |
|
} |
|
for(i = 0; i < n; ++i){ |
|
float bias = atof(a); |
|
l.biases[i] = bias; |
|
a = strchr(a, ',')+1; |
|
} |
|
} |
|
return l; |
|
} |
|
|
|
detection_layer parse_detection(list *options, size_params params) |
|
{ |
|
int coords = option_find_int(options, "coords", 1); |
|
int classes = option_find_int(options, "classes", 1); |
|
int rescore = option_find_int(options, "rescore", 0); |
|
int num = option_find_int(options, "num", 1); |
|
int side = option_find_int(options, "side", 7); |
|
detection_layer layer = make_detection_layer(params.batch, params.inputs, num, side, classes, coords, rescore); |
|
|
|
layer.softmax = option_find_int(options, "softmax", 0); |
|
layer.sqrt = option_find_int(options, "sqrt", 0); |
|
|
|
layer.max_boxes = option_find_int_quiet(options, "max",90); |
|
layer.coord_scale = option_find_float(options, "coord_scale", 1); |
|
layer.forced = option_find_int(options, "forced", 0); |
|
layer.object_scale = option_find_float(options, "object_scale", 1); |
|
layer.noobject_scale = option_find_float(options, "noobject_scale", 1); |
|
layer.class_scale = option_find_float(options, "class_scale", 1); |
|
layer.jitter = option_find_float(options, "jitter", .2); |
|
layer.random = option_find_int_quiet(options, "random", 0); |
|
layer.reorg = option_find_int_quiet(options, "reorg", 0); |
|
return layer; |
|
} |
|
|
|
cost_layer parse_cost(list *options, size_params params) |
|
{ |
|
char *type_s = option_find_str(options, "type", "sse"); |
|
COST_TYPE type = get_cost_type(type_s); |
|
float scale = option_find_float_quiet(options, "scale",1); |
|
cost_layer layer = make_cost_layer(params.batch, params.inputs, type, scale); |
|
layer.ratio = option_find_float_quiet(options, "ratio",0); |
|
layer.noobject_scale = option_find_float_quiet(options, "noobj", 1); |
|
layer.thresh = option_find_float_quiet(options, "thresh",0); |
|
return layer; |
|
} |
|
|
|
crop_layer parse_crop(list *options, size_params params) |
|
{ |
|
int crop_height = option_find_int(options, "crop_height",1); |
|
int crop_width = option_find_int(options, "crop_width",1); |
|
int flip = option_find_int(options, "flip",0); |
|
float angle = option_find_float(options, "angle",0); |
|
float saturation = option_find_float(options, "saturation",1); |
|
float exposure = option_find_float(options, "exposure",1); |
|
|
|
int batch,h,w,c; |
|
h = params.h; |
|
w = params.w; |
|
c = params.c; |
|
batch=params.batch; |
|
if(!(h && w && c)) printf("Layer before crop layer must output image.\n"); |
|
|
|
int noadjust = option_find_int_quiet(options, "noadjust",0); |
|
|
|
crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure); |
|
l.shift = option_find_float(options, "shift", 0); |
|
l.noadjust = noadjust; |
|
return l; |
|
} |
|
|
|
layer parse_reorg(list *options, size_params params) |
|
{ |
|
int stride = option_find_int(options, "stride",1); |
|
int reverse = option_find_int_quiet(options, "reverse",0); |
|
int flatten = option_find_int_quiet(options, "flatten",0); |
|
int extra = option_find_int_quiet(options, "extra",0); |
|
|
|
int batch,h,w,c; |
|
h = params.h; |
|
w = params.w; |
|
c = params.c; |
|
batch=params.batch; |
|
if(!(h && w && c)) printf("Layer before reorg layer must output image.\n"); |
|
|
|
layer layer = make_reorg_layer(batch,w,h,c,stride,reverse, flatten, extra); |
|
return layer; |
|
} |
|
|
|
maxpool_layer parse_maxpool(list *options, size_params params) |
|
{ |
|
int stride = option_find_int(options, "stride",1); |
|
int size = option_find_int(options, "size",stride); |
|
int padding = option_find_int_quiet(options, "padding", size-1); |
|
|
|
int batch,h,w,c; |
|
h = params.h; |
|
w = params.w; |
|
c = params.c; |
|
batch=params.batch; |
|
if(!(h && w && c)) printf("Layer before maxpool layer must output image.\n"); |
|
|
|
maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride,padding); |
|
return layer; |
|
} |
|
|
|
avgpool_layer parse_avgpool(list *options, size_params params) |
|
{ |
|
int batch,w,h,c; |
|
w = params.w; |
|
h = params.h; |
|
c = params.c; |
|
batch=params.batch; |
|
if(!(h && w && c)) printf("Layer before avgpool layer must output image.\n"); |
|
|
|
avgpool_layer layer = make_avgpool_layer(batch,w,h,c); |
|
return layer; |
|
} |
|
|
|
dropout_layer parse_dropout(list *options, size_params params) |
|
{ |
|
float probability = option_find_float(options, "probability", .5); |
|
dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability); |
|
layer.out_w = params.w; |
|
layer.out_h = params.h; |
|
layer.out_c = params.c; |
|
return layer; |
|
} |
|
|
|
layer parse_normalization(list *options, size_params params) |
|
{ |
|
float alpha = option_find_float(options, "alpha", .0001); |
|
float beta = option_find_float(options, "beta" , .75); |
|
float kappa = option_find_float(options, "kappa", 1); |
|
int size = option_find_int(options, "size", 5); |
|
layer l = make_normalization_layer(params.batch, params.w, params.h, params.c, size, alpha, beta, kappa); |
|
return l; |
|
} |
|
|
|
layer parse_batchnorm(list *options, size_params params) |
|
{ |
|
layer l = make_batchnorm_layer(params.batch, params.w, params.h, params.c); |
|
return l; |
|
} |
|
|
|
layer parse_shortcut(list *options, size_params params, network *net) |
|
{ |
|
char *l = option_find(options, "from"); |
|
int index = atoi(l); |
|
if(index < 0) index = params.index + index; |
|
|
|
int batch = params.batch; |
|
layer from = net->layers[index]; |
|
|
|
layer s = make_shortcut_layer(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c); |
|
|
|
char *activation_s = option_find_str(options, "activation", "linear"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
s.activation = activation; |
|
s.alpha = option_find_float_quiet(options, "alpha", 1); |
|
s.beta = option_find_float_quiet(options, "beta", 1); |
|
return s; |
|
} |
|
|
|
|
|
layer parse_l2norm(list *options, size_params params) |
|
{ |
|
layer l = make_l2norm_layer(params.batch, params.inputs); |
|
l.h = l.out_h = params.h; |
|
l.w = l.out_w = params.w; |
|
l.c = l.out_c = params.c; |
|
return l; |
|
} |
|
|
|
|
|
layer parse_logistic(list *options, size_params params) |
|
{ |
|
layer l = make_logistic_layer(params.batch, params.inputs); |
|
l.h = l.out_h = params.h; |
|
l.w = l.out_w = params.w; |
|
l.c = l.out_c = params.c; |
|
return l; |
|
} |
|
|
|
layer parse_activation(list *options, size_params params) |
|
{ |
|
char *activation_s = option_find_str(options, "activation", "linear"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
layer l = make_activation_layer(params.batch, params.inputs, activation); |
|
|
|
l.h = l.out_h = params.h; |
|
l.w = l.out_w = params.w; |
|
l.c = l.out_c = params.c; |
|
|
|
return l; |
|
} |
|
|
|
layer parse_upsample(list *options, size_params params, network *net) |
|
{ |
|
|
|
int stride = option_find_int(options, "stride",2); |
|
layer l = make_upsample_layer(params.batch, params.w, params.h, params.c, stride); |
|
l.scale = option_find_float_quiet(options, "scale", 1); |
|
return l; |
|
} |
|
|
|
route_layer parse_route(list *options, size_params params, network *net) |
|
{ |
|
char *l = option_find(options, "layers"); |
|
int len = strlen(l); |
|
if(!l) printf("Route Layer must specify input layers\n"); |
|
int n = 1; |
|
int i; |
|
for(i = 0; i < len; ++i){ |
|
if (l[i] == ',') ++n; |
|
} |
|
|
|
int *layers = calloc(n, sizeof(int)); |
|
int *sizes = calloc(n, sizeof(int)); |
|
for(i = 0; i < n; ++i){ |
|
int index = atoi(l); |
|
l = strchr(l, ',')+1; |
|
if(index < 0) index = params.index + index; |
|
layers[i] = index; |
|
sizes[i] = net->layers[index].outputs; |
|
} |
|
int batch = params.batch; |
|
|
|
route_layer layer = make_route_layer(batch, n, layers, sizes); |
|
|
|
convolutional_layer first = net->layers[layers[0]]; |
|
layer.out_w = first.out_w; |
|
layer.out_h = first.out_h; |
|
layer.out_c = first.out_c; |
|
for(i = 1; i < n; ++i){ |
|
int index = layers[i]; |
|
convolutional_layer next = net->layers[index]; |
|
if(next.out_w == first.out_w && next.out_h == first.out_h){ |
|
layer.out_c += next.out_c; |
|
}else{ |
|
layer.out_h = layer.out_w = layer.out_c = 0; |
|
} |
|
} |
|
|
|
return layer; |
|
} |
|
|
|
learning_rate_policy get_policy(char *s) |
|
{ |
|
if (strcmp(s, "random")==0) return RANDOM; |
|
if (strcmp(s, "poly")==0) return POLY; |
|
if (strcmp(s, "constant")==0) return CONSTANT; |
|
if (strcmp(s, "step")==0) return STEP; |
|
if (strcmp(s, "exp")==0) return EXP; |
|
if (strcmp(s, "sigmoid")==0) return SIG; |
|
if (strcmp(s, "steps")==0) return STEPS; |
|
fprintf(stderr, "Couldn't find policy %s, going with constant\n", s); |
|
return CONSTANT; |
|
} |
|
|
|
void parse_net_options(list *options, network *net) |
|
{ |
|
net->batch = option_find_int(options, "batch",1); |
|
net->learning_rate = option_find_float(options, "learning_rate", .001); |
|
net->momentum = option_find_float(options, "momentum", .9); |
|
net->decay = option_find_float(options, "decay", .0001); |
|
int subdivs = option_find_int(options, "subdivisions",1); |
|
net->time_steps = option_find_int_quiet(options, "time_steps",1); |
|
net->notruth = option_find_int_quiet(options, "notruth",0); |
|
net->batch /= subdivs; |
|
net->batch *= net->time_steps; |
|
net->subdivisions = subdivs; |
|
net->random = option_find_int_quiet(options, "random", 0); |
|
|
|
net->adam = option_find_int_quiet(options, "adam", 0); |
|
if(net->adam){ |
|
net->B1 = option_find_float(options, "B1", .9); |
|
net->B2 = option_find_float(options, "B2", .999); |
|
net->eps = option_find_float(options, "eps", .0000001); |
|
} |
|
|
|
net->h = option_find_int_quiet(options, "height",0); |
|
net->w = option_find_int_quiet(options, "width",0); |
|
net->c = option_find_int_quiet(options, "channels",0); |
|
net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c); |
|
net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2); |
|
net->min_crop = option_find_int_quiet(options, "min_crop",net->w); |
|
net->max_ratio = option_find_float_quiet(options, "max_ratio", (float) net->max_crop / net->w); |
|
net->min_ratio = option_find_float_quiet(options, "min_ratio", (float) net->min_crop / net->w); |
|
net->center = option_find_int_quiet(options, "center",0); |
|
net->clip = option_find_float_quiet(options, "clip", 0); |
|
|
|
net->angle = option_find_float_quiet(options, "angle", 0); |
|
net->aspect = option_find_float_quiet(options, "aspect", 1); |
|
net->saturation = option_find_float_quiet(options, "saturation", 1); |
|
net->exposure = option_find_float_quiet(options, "exposure", 1); |
|
net->hue = option_find_float_quiet(options, "hue", 0); |
|
|
|
if(!net->inputs && !(net->h && net->w && net->c)) printf("No input parameters supplied\n"); |
|
|
|
char *policy_s = option_find_str(options, "policy", "constant"); |
|
net->policy = get_policy(policy_s); |
|
net->burn_in = option_find_int_quiet(options, "burn_in", 0); |
|
net->power = option_find_float_quiet(options, "power", 4); |
|
if(net->policy == STEP){ |
|
net->step = option_find_int(options, "step", 1); |
|
net->scale = option_find_float(options, "scale", 1); |
|
} else if (net->policy == STEPS){ |
|
char *l = option_find(options, "steps"); |
|
char *p = option_find(options, "scales"); |
|
if(!l || !p) printf("STEPS policy must have steps and scales in cfg file\n"); |
|
|
|
int len = strlen(l); |
|
int n = 1; |
|
int i; |
|
for(i = 0; i < len; ++i){ |
|
if (l[i] == ',') ++n; |
|
} |
|
int *steps = calloc(n, sizeof(int)); |
|
float *scales = calloc(n, sizeof(float)); |
|
for(i = 0; i < n; ++i){ |
|
int step = atoi(l); |
|
float scale = atof(p); |
|
l = strchr(l, ',')+1; |
|
p = strchr(p, ',')+1; |
|
steps[i] = step; |
|
scales[i] = scale; |
|
} |
|
net->scales = scales; |
|
net->steps = steps; |
|
net->num_steps = n; |
|
} else if (net->policy == EXP){ |
|
net->gamma = option_find_float(options, "gamma", 1); |
|
} else if (net->policy == SIG){ |
|
net->gamma = option_find_float(options, "gamma", 1); |
|
net->step = option_find_int(options, "step", 1); |
|
} else if (net->policy == POLY || net->policy == RANDOM){ |
|
} |
|
net->max_batches = option_find_int(options, "max_batches", 0); |
|
} |
|
|
|
int is_network(section *s) |
|
{ |
|
return (strcmp(s->type, "[net]")==0 |
|
|| strcmp(s->type, "[network]")==0); |
|
} |
|
|
|
network *parse_network_cfg(char *filename) |
|
{ |
|
list *sections = read_cfg(filename); |
|
node *n = sections->front; |
|
if(!n) printf("Config file has no sections\n"); |
|
network *net = make_network(sections->size - 1); |
|
net->gpu_index = gpu_index; |
|
size_params params; |
|
|
|
section *s = (section *)n->val; |
|
list *options = s->options; |
|
if(!is_network(s)) printf("First section must be [net] or [network]\n"); |
|
parse_net_options(options, net); |
|
|
|
params.h = net->h; |
|
params.w = net->w; |
|
params.c = net->c; |
|
params.inputs = net->inputs; |
|
params.batch = net->batch; |
|
params.time_steps = net->time_steps; |
|
params.net = net; |
|
|
|
size_t workspace_size = 0; |
|
n = n->next; |
|
int count = 0; |
|
free_section(s); |
|
fprintf(stderr, "layer filters size input output\n"); |
|
while(n){ |
|
params.index = count; |
|
fprintf(stderr, "%5d ", count); |
|
s = (section *)n->val; |
|
options = s->options; |
|
layer l = {0}; |
|
LAYER_TYPE lt = string_to_layer_type(s->type); |
|
if(lt == CONVOLUTIONAL){ |
|
l = parse_convolutional(options, params); |
|
}else if(lt == DECONVOLUTIONAL){ |
|
l = parse_deconvolutional(options, params); |
|
}else if(lt == LOCAL){ |
|
l = parse_local(options, params); |
|
}else if(lt == ACTIVE){ |
|
l = parse_activation(options, params); |
|
}else if(lt == LOGXENT){ |
|
l = parse_logistic(options, params); |
|
}else if(lt == L2NORM){ |
|
l = parse_l2norm(options, params); |
|
}else if(lt == RNN){ |
|
l = parse_rnn(options, params); |
|
}else if(lt == GRU){ |
|
l = parse_gru(options, params); |
|
}else if (lt == LSTM) { |
|
l = parse_lstm(options, params); |
|
}else if(lt == CRNN){ |
|
l = parse_crnn(options, params); |
|
}else if(lt == CONNECTED){ |
|
l = parse_connected(options, params); |
|
}else if(lt == CROP){ |
|
l = parse_crop(options, params); |
|
}else if(lt == COST){ |
|
l = parse_cost(options, params); |
|
}else if(lt == REGION){ |
|
l = parse_region(options, params); |
|
}else if(lt == YOLO){ |
|
l = parse_yolo(options, params); |
|
}else if(lt == ISEG){ |
|
l = parse_iseg(options, params); |
|
}else if(lt == DETECTION){ |
|
l = parse_detection(options, params); |
|
}else if(lt == SOFTMAX){ |
|
l = parse_softmax(options, params); |
|
net->hierarchy = l.softmax_tree; |
|
}else if(lt == NORMALIZATION){ |
|
l = parse_normalization(options, params); |
|
}else if(lt == BATCHNORM){ |
|
l = parse_batchnorm(options, params); |
|
}else if(lt == MAXPOOL){ |
|
l = parse_maxpool(options, params); |
|
}else if(lt == REORG){ |
|
l = parse_reorg(options, params); |
|
}else if(lt == AVGPOOL){ |
|
l = parse_avgpool(options, params); |
|
}else if(lt == ROUTE){ |
|
l = parse_route(options, params, net); |
|
}else if(lt == UPSAMPLE){ |
|
l = parse_upsample(options, params, net); |
|
}else if(lt == SHORTCUT){ |
|
l = parse_shortcut(options, params, net); |
|
}else if(lt == DROPOUT){ |
|
l = parse_dropout(options, params); |
|
l.output = net->layers[count-1].output; |
|
l.delta = net->layers[count-1].delta; |
|
#ifdef GPU |
|
l.output_gpu = net->layers[count-1].output_gpu; |
|
l.delta_gpu = net->layers[count-1].delta_gpu; |
|
#endif |
|
}else{ |
|
fprintf(stderr, "Type not recognized: %s\n", s->type); |
|
} |
|
l.clip = net->clip; |
|
l.truth = option_find_int_quiet(options, "truth", 0); |
|
l.onlyforward = option_find_int_quiet(options, "onlyforward", 0); |
|
l.stopbackward = option_find_int_quiet(options, "stopbackward", 0); |
|
l.dontsave = option_find_int_quiet(options, "dontsave", 0); |
|
l.dontload = option_find_int_quiet(options, "dontload", 0); |
|
l.numload = option_find_int_quiet(options, "numload", 0); |
|
l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0); |
|
l.learning_rate_scale = option_find_float_quiet(options, "learning_rate", 1); |
|
l.smooth = option_find_float_quiet(options, "smooth", 0); |
|
option_unused(options); |
|
net->layers[count] = l; |
|
if (l.workspace_size > workspace_size) workspace_size = l.workspace_size; |
|
free_section(s); |
|
n = n->next; |
|
++count; |
|
if(n){ |
|
params.h = l.out_h; |
|
params.w = l.out_w; |
|
params.c = l.out_c; |
|
params.inputs = l.outputs; |
|
} |
|
} |
|
free_list(sections); |
|
layer out = get_network_output_layer(net); |
|
net->outputs = out.outputs; |
|
net->truths = out.outputs; |
|
if(net->layers[net->n-1].truths) net->truths = net->layers[net->n-1].truths; |
|
net->output = out.output; |
|
net->input = calloc(net->inputs*net->batch, sizeof(float)); |
|
net->truth = calloc(net->truths*net->batch, sizeof(float)); |
|
#ifdef GPU |
|
net->output_gpu = out.output_gpu; |
|
net->input_gpu = cuda_make_array(net->input, net->inputs*net->batch); |
|
net->truth_gpu = cuda_make_array(net->truth, net->truths*net->batch); |
|
#endif |
|
if(workspace_size){ |
|
//printf("%ld\n", workspace_size); |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1); |
|
}else { |
|
net->workspace = calloc(1, workspace_size); |
|
} |
|
#else |
|
net->workspace = calloc(1, workspace_size); |
|
#endif |
|
} |
|
return net; |
|
} |
|
|
|
list *read_cfg(char *filename) |
|
{ |
|
FILE *file = fopen(filename, "r"); |
|
if(file == 0) file_error(filename); |
|
char *line; |
|
int nu = 0; |
|
list *options = make_list(); |
|
section *current = 0; |
|
while((line=fgetl(file)) != 0){ |
|
++ nu; |
|
strip(line); |
|
switch(line[0]){ |
|
case '[': |
|
current = malloc(sizeof(section)); |
|
list_insert(options, current); |
|
current->options = make_list(); |
|
current->type = line; |
|
break; |
|
case '\0': |
|
case '#': |
|
case ';': |
|
if (line) { |
|
free(line); |
|
line = NULL; |
|
} |
|
break; |
|
default: |
|
if(!read_option(line, current->options)){ |
|
fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line); |
|
if (line) { |
|
free(line); |
|
line = NULL; |
|
} |
|
} |
|
break; |
|
} |
|
} |
|
fclose(file); |
|
return options; |
|
} |
|
|
|
void save_convolutional_weights_binary(layer l, FILE *fp) |
|
{ |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
pull_convolutional_layer(l); |
|
} |
|
#endif |
|
binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights); |
|
int size = l.c*l.size*l.size; |
|
int i, j, k; |
|
fwrite(l.biases, sizeof(float), l.n, fp); |
|
if (l.batch_normalize){ |
|
fwrite(l.scales, sizeof(float), l.n, fp); |
|
fwrite(l.rolling_mean, sizeof(float), l.n, fp); |
|
fwrite(l.rolling_variance, sizeof(float), l.n, fp); |
|
} |
|
for(i = 0; i < l.n; ++i){ |
|
float mean = l.binary_weights[i*size]; |
|
if(mean < 0) mean = -mean; |
|
fwrite(&mean, sizeof(float), 1, fp); |
|
for(j = 0; j < size/8; ++j){ |
|
int index = i*size + j*8; |
|
unsigned char c = 0; |
|
for(k = 0; k < 8; ++k){ |
|
if (j*8 + k >= size) break; |
|
if (l.binary_weights[index + k] > 0) c = (c | 1<<k); |
|
} |
|
fwrite(&c, sizeof(char), 1, fp); |
|
} |
|
} |
|
} |
|
|
|
void save_convolutional_weights(layer l, FILE *fp) |
|
{ |
|
if(l.binary){ |
|
//save_convolutional_weights_binary(l, fp); |
|
//return; |
|
} |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
pull_convolutional_layer(l); |
|
} |
|
#endif |
|
int num = l.nweights; |
|
fwrite(l.biases, sizeof(float), l.n, fp); |
|
if (l.batch_normalize){ |
|
fwrite(l.scales, sizeof(float), l.n, fp); |
|
fwrite(l.rolling_mean, sizeof(float), l.n, fp); |
|
fwrite(l.rolling_variance, sizeof(float), l.n, fp); |
|
} |
|
fwrite(l.weights, sizeof(float), num, fp); |
|
} |
|
|
|
void save_batchnorm_weights(layer l, FILE *fp) |
|
{ |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
pull_batchnorm_layer(l); |
|
} |
|
#endif |
|
fwrite(l.scales, sizeof(float), l.c, fp); |
|
fwrite(l.rolling_mean, sizeof(float), l.c, fp); |
|
fwrite(l.rolling_variance, sizeof(float), l.c, fp); |
|
} |
|
|
|
void save_connected_weights(layer l, FILE *fp) |
|
{ |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
pull_connected_layer(l); |
|
} |
|
#endif |
|
fwrite(l.biases, sizeof(float), l.outputs, fp); |
|
fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
|
if (l.batch_normalize){ |
|
fwrite(l.scales, sizeof(float), l.outputs, fp); |
|
fwrite(l.rolling_mean, sizeof(float), l.outputs, fp); |
|
fwrite(l.rolling_variance, sizeof(float), l.outputs, fp); |
|
} |
|
} |
|
|
|
void save_weights_upto(network *net, char *filename, int cutoff) |
|
{ |
|
#ifdef GPU |
|
if(net->gpu_index >= 0){ |
|
cuda_set_device(net->gpu_index); |
|
} |
|
#endif |
|
fprintf(stderr, "Saving weights to %s\n", filename); |
|
FILE *fp = fopen(filename, "wb"); |
|
if(!fp) file_error(filename); |
|
|
|
int major = 0; |
|
int minor = 2; |
|
int revision = 0; |
|
fwrite(&major, sizeof(int), 1, fp); |
|
fwrite(&minor, sizeof(int), 1, fp); |
|
fwrite(&revision, sizeof(int), 1, fp); |
|
fwrite(net->seen, sizeof(size_t), 1, fp); |
|
|
|
int i; |
|
for(i = 0; i < net->n && i < cutoff; ++i){ |
|
layer l = net->layers[i]; |
|
if (l.dontsave) continue; |
|
if(l.type == CONVOLUTIONAL || l.type == DECONVOLUTIONAL){ |
|
save_convolutional_weights(l, fp); |
|
} if(l.type == CONNECTED){ |
|
save_connected_weights(l, fp); |
|
} if(l.type == BATCHNORM){ |
|
save_batchnorm_weights(l, fp); |
|
} if(l.type == RNN){ |
|
save_connected_weights(*(l.input_layer), fp); |
|
save_connected_weights(*(l.self_layer), fp); |
|
save_connected_weights(*(l.output_layer), fp); |
|
} if (l.type == LSTM) { |
|
save_connected_weights(*(l.wi), fp); |
|
save_connected_weights(*(l.wf), fp); |
|
save_connected_weights(*(l.wo), fp); |
|
save_connected_weights(*(l.wg), fp); |
|
save_connected_weights(*(l.ui), fp); |
|
save_connected_weights(*(l.uf), fp); |
|
save_connected_weights(*(l.uo), fp); |
|
save_connected_weights(*(l.ug), fp); |
|
} if (l.type == GRU) { |
|
if(1){ |
|
save_connected_weights(*(l.wz), fp); |
|
save_connected_weights(*(l.wr), fp); |
|
save_connected_weights(*(l.wh), fp); |
|
save_connected_weights(*(l.uz), fp); |
|
save_connected_weights(*(l.ur), fp); |
|
save_connected_weights(*(l.uh), fp); |
|
}else{ |
|
save_connected_weights(*(l.reset_layer), fp); |
|
save_connected_weights(*(l.update_layer), fp); |
|
save_connected_weights(*(l.state_layer), fp); |
|
} |
|
} if(l.type == CRNN){ |
|
save_convolutional_weights(*(l.input_layer), fp); |
|
save_convolutional_weights(*(l.self_layer), fp); |
|
save_convolutional_weights(*(l.output_layer), fp); |
|
} if(l.type == LOCAL){ |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
pull_local_layer(l); |
|
} |
|
#endif |
|
int locations = l.out_w*l.out_h; |
|
int size = l.size*l.size*l.c*l.n*locations; |
|
fwrite(l.biases, sizeof(float), l.outputs, fp); |
|
fwrite(l.weights, sizeof(float), size, fp); |
|
} |
|
} |
|
fclose(fp); |
|
} |
|
void save_weights(network *net, char *filename) |
|
{ |
|
save_weights_upto(net, filename, net->n); |
|
} |
|
|
|
void transpose_matrix(float *a, int rows, int cols) |
|
{ |
|
float *transpose = calloc(rows*cols, sizeof(float)); |
|
int x, y; |
|
for(x = 0; x < rows; ++x){ |
|
for(y = 0; y < cols; ++y){ |
|
transpose[y*rows + x] = a[x*cols + y]; |
|
} |
|
} |
|
memcpy(a, transpose, rows*cols*sizeof(float)); |
|
if (transpose) { |
|
free(transpose); |
|
transpose = NULL; |
|
} |
|
} |
|
|
|
void load_connected_weights(layer l, FILE *fp, int transpose) |
|
{ |
|
fread(l.biases, sizeof(float), l.outputs, fp); |
|
fread(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
|
if(transpose){ |
|
transpose_matrix(l.weights, l.inputs, l.outputs); |
|
} |
|
//printf("Biases: %f mean %f variance\n", mean_array(l.biases, l.outputs), variance_array(l.biases, l.outputs)); |
|
//printf("Weights: %f mean %f variance\n", mean_array(l.weights, l.outputs*l.inputs), variance_array(l.weights, l.outputs*l.inputs)); |
|
if (l.batch_normalize && (!l.dontloadscales)){ |
|
fread(l.scales, sizeof(float), l.outputs, fp); |
|
fread(l.rolling_mean, sizeof(float), l.outputs, fp); |
|
fread(l.rolling_variance, sizeof(float), l.outputs, fp); |
|
//printf("Scales: %f mean %f variance\n", mean_array(l.scales, l.outputs), variance_array(l.scales, l.outputs)); |
|
//printf("rolling_mean: %f mean %f variance\n", mean_array(l.rolling_mean, l.outputs), variance_array(l.rolling_mean, l.outputs)); |
|
//printf("rolling_variance: %f mean %f variance\n", mean_array(l.rolling_variance, l.outputs), variance_array(l.rolling_variance, l.outputs)); |
|
} |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
push_connected_layer(l); |
|
} |
|
#endif |
|
} |
|
|
|
void load_batchnorm_weights(layer l, FILE *fp) |
|
{ |
|
fread(l.scales, sizeof(float), l.c, fp); |
|
fread(l.rolling_mean, sizeof(float), l.c, fp); |
|
fread(l.rolling_variance, sizeof(float), l.c, fp); |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
push_batchnorm_layer(l); |
|
} |
|
#endif |
|
} |
|
|
|
void load_convolutional_weights_binary(layer l, FILE *fp) |
|
{ |
|
fread(l.biases, sizeof(float), l.n, fp); |
|
if (l.batch_normalize && (!l.dontloadscales)){ |
|
fread(l.scales, sizeof(float), l.n, fp); |
|
fread(l.rolling_mean, sizeof(float), l.n, fp); |
|
fread(l.rolling_variance, sizeof(float), l.n, fp); |
|
} |
|
int size = l.c*l.size*l.size; |
|
int i, j, k; |
|
for(i = 0; i < l.n; ++i){ |
|
float mean = 0; |
|
fread(&mean, sizeof(float), 1, fp); |
|
for(j = 0; j < size/8; ++j){ |
|
int index = i*size + j*8; |
|
unsigned char c = 0; |
|
fread(&c, sizeof(char), 1, fp); |
|
for(k = 0; k < 8; ++k){ |
|
if (j*8 + k >= size) break; |
|
l.weights[index + k] = (c & 1<<k) ? mean : -mean; |
|
} |
|
} |
|
} |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
push_convolutional_layer(l); |
|
} |
|
#endif |
|
} |
|
|
|
void load_convolutional_weights(layer l, FILE *fp) |
|
{ |
|
if(l.binary){ |
|
//load_convolutional_weights_binary(l, fp); |
|
//return; |
|
} |
|
if(l.numload) l.n = l.numload; |
|
int num = l.c/l.groups*l.n*l.size*l.size; |
|
fread(l.biases, sizeof(float), l.n, fp); |
|
if (l.batch_normalize && (!l.dontloadscales)){ |
|
fread(l.scales, sizeof(float), l.n, fp); |
|
fread(l.rolling_mean, sizeof(float), l.n, fp); |
|
fread(l.rolling_variance, sizeof(float), l.n, fp); |
|
if(0){ |
|
int i; |
|
for(i = 0; i < l.n; ++i){ |
|
printf("%g, ", l.rolling_mean[i]); |
|
} |
|
printf("\n"); |
|
for(i = 0; i < l.n; ++i){ |
|
printf("%g, ", l.rolling_variance[i]); |
|
} |
|
printf("\n"); |
|
} |
|
if(0){ |
|
fill_cpu(l.n, 0, l.rolling_mean, 1); |
|
fill_cpu(l.n, 0, l.rolling_variance, 1); |
|
} |
|
if(0){ |
|
int i; |
|
for(i = 0; i < l.n; ++i){ |
|
printf("%g, ", l.rolling_mean[i]); |
|
} |
|
printf("\n"); |
|
for(i = 0; i < l.n; ++i){ |
|
printf("%g, ", l.rolling_variance[i]); |
|
} |
|
printf("\n"); |
|
} |
|
} |
|
fread(l.weights, sizeof(float), num, fp); |
|
//if(l.c == 3) scal_cpu(num, 1./256, l.weights, 1); |
|
if (l.flipped) { |
|
transpose_matrix(l.weights, l.c*l.size*l.size, l.n); |
|
} |
|
//if (l.binary) binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.weights); |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
push_convolutional_layer(l); |
|
} |
|
#endif |
|
} |
|
|
|
|
|
void load_weights_upto(network *net, char *filename, int start, int cutoff) |
|
{ |
|
#ifdef GPU |
|
if(net->gpu_index >= 0){ |
|
cuda_set_device(net->gpu_index); |
|
} |
|
#endif |
|
fprintf(stderr, "Loading weights from %s...", filename); |
|
fflush(stdout); |
|
FILE *fp = fopen(filename, "rb"); |
|
if(!fp) file_error(filename); |
|
|
|
int major; |
|
int minor; |
|
int revision; |
|
fread(&major, sizeof(int), 1, fp); |
|
fread(&minor, sizeof(int), 1, fp); |
|
fread(&revision, sizeof(int), 1, fp); |
|
if ((major*10 + minor) >= 2 && major < 1000 && minor < 1000){ |
|
fread(net->seen, sizeof(size_t), 1, fp); |
|
} else { |
|
int iseen = 0; |
|
fread(&iseen, sizeof(int), 1, fp); |
|
*net->seen = iseen; |
|
} |
|
int transpose = (major > 1000) || (minor > 1000); |
|
|
|
int i; |
|
for(i = start; i < net->n && i < cutoff; ++i){ |
|
layer l = net->layers[i]; |
|
if (l.dontload) continue; |
|
if(l.type == CONVOLUTIONAL || l.type == DECONVOLUTIONAL){ |
|
load_convolutional_weights(l, fp); |
|
} |
|
if(l.type == CONNECTED){ |
|
load_connected_weights(l, fp, transpose); |
|
} |
|
if(l.type == BATCHNORM){ |
|
load_batchnorm_weights(l, fp); |
|
} |
|
if(l.type == CRNN){ |
|
load_convolutional_weights(*(l.input_layer), fp); |
|
load_convolutional_weights(*(l.self_layer), fp); |
|
load_convolutional_weights(*(l.output_layer), fp); |
|
} |
|
if(l.type == RNN){ |
|
load_connected_weights(*(l.input_layer), fp, transpose); |
|
load_connected_weights(*(l.self_layer), fp, transpose); |
|
load_connected_weights(*(l.output_layer), fp, transpose); |
|
} |
|
if (l.type == LSTM) { |
|
load_connected_weights(*(l.wi), fp, transpose); |
|
load_connected_weights(*(l.wf), fp, transpose); |
|
load_connected_weights(*(l.wo), fp, transpose); |
|
load_connected_weights(*(l.wg), fp, transpose); |
|
load_connected_weights(*(l.ui), fp, transpose); |
|
load_connected_weights(*(l.uf), fp, transpose); |
|
load_connected_weights(*(l.uo), fp, transpose); |
|
load_connected_weights(*(l.ug), fp, transpose); |
|
} |
|
if (l.type == GRU) { |
|
if(1){ |
|
load_connected_weights(*(l.wz), fp, transpose); |
|
load_connected_weights(*(l.wr), fp, transpose); |
|
load_connected_weights(*(l.wh), fp, transpose); |
|
load_connected_weights(*(l.uz), fp, transpose); |
|
load_connected_weights(*(l.ur), fp, transpose); |
|
load_connected_weights(*(l.uh), fp, transpose); |
|
}else{ |
|
load_connected_weights(*(l.reset_layer), fp, transpose); |
|
load_connected_weights(*(l.update_layer), fp, transpose); |
|
load_connected_weights(*(l.state_layer), fp, transpose); |
|
} |
|
} |
|
if(l.type == LOCAL){ |
|
int locations = l.out_w*l.out_h; |
|
int size = l.size*l.size*l.c*l.n*locations; |
|
fread(l.biases, sizeof(float), l.outputs, fp); |
|
fread(l.weights, sizeof(float), size, fp); |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
push_local_layer(l); |
|
} |
|
#endif |
|
} |
|
} |
|
fprintf(stderr, "Done!\n"); |
|
fclose(fp); |
|
} |
|
|
|
void load_weights(network *net, char *filename) |
|
{ |
|
load_weights_upto(net, filename, 0, net->n); |
|
} |
|
|
|
///#ifdef ALLEN_MODIFIED |
|
|
|
char* load_connected_weights_mem(layer l, char *curPtr, int transpose) |
|
{ |
|
//fread(l.biases, sizeof(float), l.outputs, fp); |
|
//fread(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
|
memcpy(l.biases, curPtr, sizeof(float)*l.outputs); |
|
curPtr += sizeof(float)*l.outputs; |
|
memcpy(l.weights, curPtr, sizeof(float)*l.outputs*l.inputs); |
|
curPtr += sizeof(float)*l.outputs*l.inputs; |
|
|
|
if (transpose) { |
|
transpose_matrix(l.weights, l.inputs, l.outputs); |
|
} |
|
//printf("Biases: %f mean %f variance\n", mean_array(l.biases, l.outputs), variance_array(l.biases, l.outputs)); |
|
//printf("Weights: %f mean %f variance\n", mean_array(l.weights, l.outputs*l.inputs), variance_array(l.weights, l.outputs*l.inputs)); |
|
if (l.batch_normalize && (!l.dontloadscales)) { |
|
//fread(l.scales, sizeof(float), l.outputs, fp); |
|
//fread(l.rolling_mean, sizeof(float), l.outputs, fp); |
|
//fread(l.rolling_variance, sizeof(float), l.outputs, fp); |
|
memcpy(l.scales, curPtr, sizeof(float)*l.outputs); |
|
curPtr += sizeof(float)*l.outputs; |
|
memcpy(l.rolling_mean, curPtr, sizeof(float)*l.outputs); |
|
curPtr += sizeof(float)*l.outputs; |
|
memcpy(l.rolling_variance, curPtr, sizeof(float)*l.outputs); |
|
curPtr += sizeof(float)*l.outputs; |
|
|
|
printf("Scales: %f mean %f variance\n", mean_array(l.scales, l.outputs), variance_array(l.scales, l.outputs)); |
|
printf("rolling_mean: %f mean %f variance\n", mean_array(l.rolling_mean, l.outputs), variance_array(l.rolling_mean, l.outputs)); |
|
printf("rolling_variance: %f mean %f variance\n", mean_array(l.rolling_variance, l.outputs), variance_array(l.rolling_variance, l.outputs)); |
|
} |
|
#ifdef GPU |
|
if (gpu_index >= 0) { |
|
push_connected_layer(l); |
|
} |
|
#endif |
|
return curPtr; |
|
} |
|
|
|
char* load_batchnorm_weights_mem(layer l, char *curPtr) |
|
{ |
|
//fread(l.scales, sizeof(float), l.c, fp); |
|
//fread(l.rolling_mean, sizeof(float), l.c, fp); |
|
//fread(l.rolling_variance, sizeof(float), l.c, fp); |
|
memcpy(l.scales, curPtr, sizeof(float)*l.c); |
|
curPtr += sizeof(float)*l.c; |
|
memcpy(l.rolling_mean, curPtr, sizeof(float)*l.c); |
|
curPtr += sizeof(float)*l.c; |
|
memcpy(l.rolling_variance, curPtr, sizeof(float)*l.c); |
|
curPtr += sizeof(float)*l.c; |
|
|
|
#ifdef GPU |
|
if (gpu_index >= 0) { |
|
push_batchnorm_layer(l); |
|
} |
|
#endif |
|
return curPtr; |
|
} |
|
|
|
char* load_convolutional_weights_mem(layer l, unsigned char *curPtr) |
|
{ |
|
if (l.binary) { |
|
//load_convolutional_weights_binary(l, fp); |
|
//return; |
|
} |
|
int num = l.n*l.c*l.size*l.size; |
|
//fread(l.biases, sizeof(float), l.n, fp); |
|
/*for (int i = 0; i < sizeof(float)*l.n; i++) { |
|
printf(" %02X", *(curPtr + i)); |
|
}putchar('\n');*/ |
|
memcpy(l.biases, curPtr, sizeof(float)*l.n); |
|
curPtr += sizeof(float)*l.n; |
|
|
|
if (l.batch_normalize && (!l.dontloadscales)) { |
|
//fread(l.scales, sizeof(float), l.n, fp); |
|
//fread(l.rolling_mean, sizeof(float), l.n, fp); |
|
//fread(l.rolling_variance, sizeof(float), l.n, fp); |
|
memcpy(l.scales, curPtr, sizeof(float)*l.n); |
|
curPtr += sizeof(float)*l.n; |
|
memcpy(l.rolling_mean, curPtr, sizeof(float)*l.n); |
|
curPtr += sizeof(float)*l.n; |
|
memcpy(l.rolling_variance, curPtr, sizeof(float)*l.n); |
|
curPtr += sizeof(float)*l.n; |
|
|
|
if (0) { |
|
int i; |
|
for (i = 0; i < l.n; ++i) { |
|
printf("%g, ", l.rolling_mean[i]); |
|
} |
|
printf("\n"); |
|
for (i = 0; i < l.n; ++i) { |
|
printf("%g, ", l.rolling_variance[i]); |
|
} |
|
printf("\n"); |
|
} |
|
if (0) { |
|
fill_cpu(l.n, 0, l.rolling_mean, 1); |
|
fill_cpu(l.n, 0, l.rolling_variance, 1); |
|
} |
|
} |
|
//fread(l.weights, sizeof(float), num, fp); |
|
/*for (int i = 0; i < sizeof(float)*num; i++) { |
|
printf(" %02X", *(curPtr + i)); |
|
}putchar('\n');*/ |
|
memcpy(l.weights, curPtr, sizeof(float)*num); |
|
curPtr += sizeof(float)*num; |
|
|
|
if (l.adam) { |
|
//fread(l.m, sizeof(float), num, fp); |
|
//fread(l.v, sizeof(float), num, fp); |
|
memcpy(l.m, curPtr, sizeof(float)*num); |
|
curPtr += sizeof(float)*num; |
|
memcpy(l.v, curPtr, sizeof(float)*num); |
|
curPtr += sizeof(float)*num; |
|
} |
|
//if(l.c == 3) scal_cpu(num, 1./256, l.weights, 1); |
|
if (l.flipped) { |
|
transpose_matrix(l.weights, l.c*l.size*l.size, l.n); |
|
} |
|
//if (l.binary) binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.weights); |
|
#ifdef GPU |
|
if (gpu_index >= 0) { |
|
push_convolutional_layer(l); |
|
} |
|
#endif |
|
return (char *)curPtr; |
|
} |
|
|
|
void load_weights_mem(network *net, char *filename) |
|
{ |
|
load_weights_upto_mem(net, filename, net->n); |
|
} |
|
|
|
|
|
|
|
void load_weights_upto_mem(network *net, char *filename, int cutoff) |
|
{ |
|
#ifdef GPU |
|
if (net->gpu_index >= 0) { |
|
cuda_set_device(net->gpu_index); |
|
} |
|
#endif |
|
fprintf(stderr, "Loading weights from %s...%d%%", filename, 0); |
|
fflush(stdout); |
|
|
|
KeyExpansion(key, expandedKey); |
|
unsigned char *DecryptFileData = malloc((sizeof(char) * MAX_WEIGHT_FILE_SIZE)); |
|
/*size_t descrypt_size = */AESDecryptFileToArrayPercent(filename, expandedKey, (char *)DecryptFileData, MAX_WEIGHT_FILE_SIZE, WEIGHT_ENCRYPT_SIZE); |
|
unsigned char* curPtr = DecryptFileData; |
|
|
|
//FILE *f = fopen("GYNet_pok_weight.des", "wb"); |
|
//if (f == NULL) |
|
//{ |
|
// printf("Error opening file!\n"); |
|
// //exit(1); |
|
//} |
|
//fwrite(DecryptFileData, descrypt_size, 1, f); |
|
//fclose(f); |
|
|
|
int major; |
|
int minor; |
|
int revision; |
|
//fread(&major, sizeof(int), 1, fp); |
|
//fread(&minor, sizeof(int), 1, fp); |
|
//fread(&revision, sizeof(int), 1, fp); |
|
memcpy(&major, curPtr, sizeof(int)); |
|
curPtr += sizeof(int); |
|
memcpy(&minor, curPtr, sizeof(int)); |
|
curPtr += sizeof(int); |
|
memcpy(&revision, curPtr, sizeof(int)); |
|
curPtr += sizeof(int); |
|
|
|
if ((major * 10 + minor) >= 2) { |
|
//printf("\n seen 64 \n"); |
|
uint64_t iseen = 0; |
|
//fread(&iseen, sizeof(uint64_t), 1, fp); |
|
memcpy(&iseen, curPtr, sizeof(uint64_t)); |
|
curPtr += sizeof(uint64_t); |
|
|
|
*net->seen = iseen; |
|
} |
|
else { |
|
//printf("\n seen 32 \n"); |
|
//fread(net->seen, sizeof(int), 1, fp); |
|
memcpy(net->seen, curPtr, sizeof(int)); |
|
curPtr += sizeof(int); |
|
} |
|
int transpose = (major > 1000) || (minor > 1000); |
|
|
|
int i; |
|
for (i = 0; i < net->n && i < cutoff; ++i) { |
|
layer l = net->layers[i]; |
|
if (l.dontload) continue; |
|
if (l.type == CONVOLUTIONAL) { |
|
curPtr = (unsigned char *)load_convolutional_weights_mem(l, curPtr); |
|
} |
|
if (l.type == CONNECTED) { |
|
curPtr = (unsigned char *)load_connected_weights_mem(l, (char *)curPtr, transpose); |
|
} |
|
if (l.type == BATCHNORM) { |
|
curPtr = (unsigned char *)load_batchnorm_weights_mem(l, (char *)curPtr); |
|
} |
|
if (l.type == CRNN) { |
|
curPtr = (unsigned char *)load_convolutional_weights_mem(*(l.input_layer), curPtr); |
|
curPtr = (unsigned char *)load_convolutional_weights_mem(*(l.self_layer), curPtr); |
|
curPtr = (unsigned char *)load_convolutional_weights_mem(*(l.output_layer), curPtr); |
|
} |
|
if (l.type == RNN) { |
|
curPtr = (unsigned char *)load_connected_weights_mem(*(l.input_layer), (char *)curPtr, transpose); |
|
curPtr = (unsigned char *)load_connected_weights_mem(*(l.self_layer), (char *)curPtr, transpose); |
|
curPtr = (unsigned char *)load_connected_weights_mem(*(l.output_layer), (char *)curPtr, transpose); |
|
} |
|
if (l.type == GRU) { |
|
curPtr = (unsigned char *)load_connected_weights_mem(*(l.input_z_layer), (char *)curPtr, transpose); |
|
curPtr = (unsigned char *)load_connected_weights_mem(*(l.input_r_layer), (char *)curPtr, transpose); |
|
curPtr = (unsigned char *)load_connected_weights_mem(*(l.input_h_layer), (char *)curPtr, transpose); |
|
curPtr = (unsigned char *)load_connected_weights_mem(*(l.state_z_layer), (char *)curPtr, transpose); |
|
curPtr = (unsigned char *)load_connected_weights_mem(*(l.state_r_layer), (char *)curPtr, transpose); |
|
curPtr = (unsigned char *)load_connected_weights_mem(*(l.state_h_layer), (char *)curPtr, transpose); |
|
} |
|
if (l.type == LOCAL) { |
|
int locations = l.out_w*l.out_h; |
|
int size = l.size*l.size*l.c*l.n*locations; |
|
//fread(l.biases, sizeof(float), l.outputs, fp); |
|
//fread(l.weights, sizeof(float), size, fp); |
|
memcpy(l.biases, curPtr, sizeof(float)*l.outputs); |
|
curPtr += sizeof(float)*l.outputs; |
|
memcpy(l.weights, curPtr, sizeof(float)*size); |
|
curPtr += sizeof(float)*l.size; |
|
|
|
#ifdef GPU |
|
if (gpu_index >= 0) { |
|
push_local_layer(l); |
|
} |
|
#endif |
|
} |
|
} |
|
fprintf(stderr, "\nDone!\n"); |
|
if (DecryptFileData) { |
|
free(DecryptFileData); |
|
DecryptFileData = NULL; |
|
} |
|
} |
|
|
|
convolutional_layer parse_convolutional_mem(list *options, size_params params) |
|
{ |
|
int n = option_find_int(options, "filters", 1); |
|
int size = option_find_int(options, "size", 1); |
|
int stride = option_find_int(options, "stride", 1); |
|
int pad = option_find_int_quiet(options, "pad", 0); |
|
int padding = option_find_int_quiet(options, "padding", 0); |
|
if (pad) padding = size / 2; |
|
|
|
char *activation_s = option_find_str(options, "activation", "logistic"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
int batch, h, w, c; |
|
h = params.h; |
|
w = params.w; |
|
c = params.c; |
|
batch = params.batch; |
|
if (!(h && w && c)) printf("Layer before convolutional layer must output image.\n"); |
|
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
|
int binary = option_find_int_quiet(options, "binary", 0); |
|
int xnor = option_find_int_quiet(options, "xnor", 0); |
|
int use_bin_output = option_find_int_quiet(options, "bin_output", 0); |
|
|
|
convolutional_layer layer = make_convolutional_layer_mem(batch, h, w, c, n, size, stride, padding, activation, batch_normalize, binary, xnor, params.net->adam, use_bin_output); |
|
layer.flipped = option_find_int_quiet(options, "flipped", 0); |
|
layer.dot = option_find_float_quiet(options, "dot", 0); |
|
|
|
if (params.net->adam) { |
|
layer.B1 = params.net->B1; |
|
layer.B2 = params.net->B2; |
|
layer.eps = params.net->eps; |
|
} |
|
|
|
return layer; |
|
} |
|
|
|
layer parse_yolo_mem(list *options, size_params params) |
|
{ |
|
int classes = option_find_int(options, "classes", 20); |
|
int total = option_find_int(options, "num", 1); |
|
int num = total; |
|
|
|
char *a = option_find_str(options, "mask", 0); |
|
int *mask = parse_yolo_mask(a, &num); |
|
int max_boxes = option_find_int_quiet(options, "max", 90); |
|
layer l = make_yolo_layer_mem(params.batch, params.w, params.h, num, total, mask, classes, max_boxes); |
|
if (l.outputs != params.inputs) { |
|
printf("Error: l.outputs == params.inputs \n"); |
|
printf("filters= in the [convolutional]-layer doesn't correspond to classes= or mask= in [yolo]-layer \n"); |
|
#if 1 |
|
stop_test_nn_cavalry("Error: l.outputs == params.inputs"); |
|
//stop_server(); |
|
|
|
#endif |
|
exit(EXIT_FAILURE); |
|
} |
|
//assert(l.outputs == params.inputs); |
|
|
|
//l.max_boxes = option_find_int_quiet(options, "max", 90); |
|
l.jitter = option_find_float(options, "jitter", .2); |
|
l.focal_loss = option_find_int_quiet(options, "focal_loss", 0); |
|
|
|
l.ignore_thresh = option_find_float(options, "ignore_thresh", .5); |
|
l.truth_thresh = option_find_float(options, "truth_thresh", 1); |
|
l.random = option_find_int_quiet(options, "random", 0); |
|
|
|
char *map_file = option_find_str(options, "map", 0); |
|
if (map_file) l.map = read_map(map_file); |
|
|
|
a = option_find_str(options, "anchors", 0); |
|
if (a) { |
|
int len = strlen(a); |
|
int n = 1; |
|
int i; |
|
for (i = 0; i < len; ++i) { |
|
if (a[i] == ',') ++n; |
|
} |
|
for (i = 0; i < n && i < total * 2; ++i) { |
|
float bias = atof(a); |
|
l.biases[i] = bias; |
|
a = strchr(a, ',') + 1; |
|
} |
|
} |
|
return l; |
|
} |
|
|
|
maxpool_layer parse_maxpool_mem(list *options, size_params params) |
|
{ |
|
int stride = option_find_int(options, "stride", 1); |
|
int size = option_find_int(options, "size", stride); |
|
int padding = option_find_int_quiet(options, "padding", size - 1); |
|
|
|
int batch, h, w, c; |
|
h = params.h; |
|
w = params.w; |
|
c = params.c; |
|
batch = params.batch; |
|
if (!(h && w && c)) printf("Layer before maxpool layer must output image.\n"); |
|
|
|
maxpool_layer layer = make_maxpool_layer_mem(batch, h, w, c, size, stride, padding); |
|
return layer; |
|
} |
|
|
|
layer parse_upsample_mem(list *options, size_params params, network net) |
|
{ |
|
|
|
int stride = option_find_int(options, "stride", 2); |
|
layer l = make_upsample_layer_mem(params.batch, params.w, params.h, params.c, stride); |
|
l.scale = option_find_float_quiet(options, "scale", 1); |
|
return l; |
|
} |
|
|
|
layer parse_shortcut_mem(list *options, size_params params, network net) |
|
{ |
|
char *l = option_find(options, "from"); |
|
int index = atoi(l); |
|
if (index < 0) index = params.index + index; |
|
|
|
int batch = params.batch; |
|
layer from = net.layers[index]; |
|
|
|
layer s = make_shortcut_layer_mem(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c); |
|
|
|
char *activation_s = option_find_str(options, "activation", "linear"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
s.activation = activation; |
|
return s; |
|
} |
|
|
|
|