You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
336 lines
11 KiB
336 lines
11 KiB
#include "connected_layer.h" |
|
#include "convolutional_layer.h" |
|
#include "batchnorm_layer.h" |
|
#include "utils.h" |
|
#include "cuda.h" |
|
#include "blas.h" |
|
#include "gemm.h" |
|
|
|
#include <math.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, int batch_normalize, int adam) |
|
{ |
|
int i; |
|
layer l = {0}; |
|
l.learning_rate_scale = 1; |
|
l.type = CONNECTED; |
|
|
|
l.inputs = inputs; |
|
l.outputs = outputs; |
|
l.batch=batch; |
|
l.batch_normalize = batch_normalize; |
|
l.h = 1; |
|
l.w = 1; |
|
l.c = inputs; |
|
l.out_h = 1; |
|
l.out_w = 1; |
|
l.out_c = outputs; |
|
|
|
l.output = calloc(batch*outputs, sizeof(float)); |
|
l.delta = calloc(batch*outputs, sizeof(float)); |
|
|
|
l.weight_updates = calloc(inputs*outputs, sizeof(float)); |
|
l.bias_updates = calloc(outputs, sizeof(float)); |
|
|
|
l.weights = calloc(outputs*inputs, sizeof(float)); |
|
l.biases = calloc(outputs, sizeof(float)); |
|
|
|
l.forward = forward_connected_layer; |
|
l.backward = backward_connected_layer; |
|
l.update = update_connected_layer; |
|
|
|
//float scale = 1./sqrt(inputs); |
|
float scale = sqrt(2./inputs); |
|
for(i = 0; i < outputs*inputs; ++i){ |
|
l.weights[i] = scale*rand_uniform(-1, 1); |
|
} |
|
|
|
for(i = 0; i < outputs; ++i){ |
|
l.biases[i] = 0; |
|
} |
|
|
|
if(adam){ |
|
l.m = calloc(l.inputs*l.outputs, sizeof(float)); |
|
l.v = calloc(l.inputs*l.outputs, sizeof(float)); |
|
l.bias_m = calloc(l.outputs, sizeof(float)); |
|
l.scale_m = calloc(l.outputs, sizeof(float)); |
|
l.bias_v = calloc(l.outputs, sizeof(float)); |
|
l.scale_v = calloc(l.outputs, sizeof(float)); |
|
} |
|
if(batch_normalize){ |
|
l.scales = calloc(outputs, sizeof(float)); |
|
l.scale_updates = calloc(outputs, sizeof(float)); |
|
for(i = 0; i < outputs; ++i){ |
|
l.scales[i] = 1; |
|
} |
|
|
|
l.mean = calloc(outputs, sizeof(float)); |
|
l.mean_delta = calloc(outputs, sizeof(float)); |
|
l.variance = calloc(outputs, sizeof(float)); |
|
l.variance_delta = calloc(outputs, sizeof(float)); |
|
|
|
l.rolling_mean = calloc(outputs, sizeof(float)); |
|
l.rolling_variance = calloc(outputs, sizeof(float)); |
|
|
|
l.x = calloc(batch*outputs, sizeof(float)); |
|
l.x_norm = calloc(batch*outputs, sizeof(float)); |
|
} |
|
|
|
#ifdef GPU |
|
l.forward_gpu = forward_connected_layer_gpu; |
|
l.backward_gpu = backward_connected_layer_gpu; |
|
l.update_gpu = update_connected_layer_gpu; |
|
|
|
l.weights_gpu = cuda_make_array(l.weights, outputs*inputs); |
|
l.biases_gpu = cuda_make_array(l.biases, outputs); |
|
|
|
l.weight_updates_gpu = cuda_make_array(l.weight_updates, outputs*inputs); |
|
l.bias_updates_gpu = cuda_make_array(l.bias_updates, outputs); |
|
|
|
l.output_gpu = cuda_make_array(l.output, outputs*batch); |
|
l.delta_gpu = cuda_make_array(l.delta, outputs*batch); |
|
if (adam) { |
|
l.m_gpu = cuda_make_array(0, inputs*outputs); |
|
l.v_gpu = cuda_make_array(0, inputs*outputs); |
|
l.bias_m_gpu = cuda_make_array(0, outputs); |
|
l.bias_v_gpu = cuda_make_array(0, outputs); |
|
l.scale_m_gpu = cuda_make_array(0, outputs); |
|
l.scale_v_gpu = cuda_make_array(0, outputs); |
|
} |
|
|
|
if(batch_normalize){ |
|
l.mean_gpu = cuda_make_array(l.mean, outputs); |
|
l.variance_gpu = cuda_make_array(l.variance, outputs); |
|
|
|
l.rolling_mean_gpu = cuda_make_array(l.mean, outputs); |
|
l.rolling_variance_gpu = cuda_make_array(l.variance, outputs); |
|
|
|
l.mean_delta_gpu = cuda_make_array(l.mean, outputs); |
|
l.variance_delta_gpu = cuda_make_array(l.variance, outputs); |
|
|
|
l.scales_gpu = cuda_make_array(l.scales, outputs); |
|
l.scale_updates_gpu = cuda_make_array(l.scale_updates, outputs); |
|
|
|
l.x_gpu = cuda_make_array(l.output, l.batch*outputs); |
|
l.x_norm_gpu = cuda_make_array(l.output, l.batch*outputs); |
|
#ifdef CUDNN |
|
cudnnCreateTensorDescriptor(&l.normTensorDesc); |
|
cudnnCreateTensorDescriptor(&l.dstTensorDesc); |
|
cudnnSetTensor4dDescriptor(l.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w); |
|
cudnnSetTensor4dDescriptor(l.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l.out_c, 1, 1); |
|
#endif |
|
} |
|
#endif |
|
l.activation = activation; |
|
fprintf(stderr, "connected %4d -> %4d\n", inputs, outputs); |
|
return l; |
|
} |
|
|
|
void update_connected_layer(layer l, update_args a) |
|
{ |
|
float learning_rate = a.learning_rate*l.learning_rate_scale; |
|
float momentum = a.momentum; |
|
float decay = a.decay; |
|
int batch = a.batch; |
|
axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1); |
|
scal_cpu(l.outputs, momentum, l.bias_updates, 1); |
|
|
|
if(l.batch_normalize){ |
|
axpy_cpu(l.outputs, learning_rate/batch, l.scale_updates, 1, l.scales, 1); |
|
scal_cpu(l.outputs, momentum, l.scale_updates, 1); |
|
} |
|
|
|
axpy_cpu(l.inputs*l.outputs, -decay*batch, l.weights, 1, l.weight_updates, 1); |
|
axpy_cpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates, 1, l.weights, 1); |
|
scal_cpu(l.inputs*l.outputs, momentum, l.weight_updates, 1); |
|
} |
|
|
|
void forward_connected_layer(layer l, network net) |
|
{ |
|
fill_cpu(l.outputs*l.batch, 0, l.output, 1); |
|
int m = l.batch; |
|
int k = l.inputs; |
|
int n = l.outputs; |
|
float *a = net.input; |
|
float *b = l.weights; |
|
float *c = l.output; |
|
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
|
if(l.batch_normalize){ |
|
forward_batchnorm_layer(l, net); |
|
} else { |
|
add_bias(l.output, l.biases, l.batch, l.outputs, 1); |
|
} |
|
activate_array(l.output, l.outputs*l.batch, l.activation); |
|
} |
|
|
|
void backward_connected_layer(layer l, network net) |
|
{ |
|
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); |
|
|
|
if(l.batch_normalize){ |
|
backward_batchnorm_layer(l, net); |
|
} else { |
|
backward_bias(l.bias_updates, l.delta, l.batch, l.outputs, 1); |
|
} |
|
|
|
int m = l.outputs; |
|
int k = l.batch; |
|
int n = l.inputs; |
|
float *a = l.delta; |
|
float *b = net.input; |
|
float *c = l.weight_updates; |
|
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); |
|
|
|
m = l.batch; |
|
k = l.outputs; |
|
n = l.inputs; |
|
|
|
a = l.delta; |
|
b = l.weights; |
|
c = net.delta; |
|
|
|
if(c) gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
|
} |
|
|
|
|
|
void denormalize_connected_layer(layer l) |
|
{ |
|
int i, j; |
|
for(i = 0; i < l.outputs; ++i){ |
|
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .000001); |
|
for(j = 0; j < l.inputs; ++j){ |
|
l.weights[i*l.inputs + j] *= scale; |
|
} |
|
l.biases[i] -= l.rolling_mean[i] * scale; |
|
l.scales[i] = 1; |
|
l.rolling_mean[i] = 0; |
|
l.rolling_variance[i] = 1; |
|
} |
|
} |
|
|
|
|
|
void statistics_connected_layer(layer l) |
|
{ |
|
if(l.batch_normalize){ |
|
printf("Scales "); |
|
print_statistics(l.scales, l.outputs); |
|
/* |
|
printf("Rolling Mean "); |
|
print_statistics(l.rolling_mean, l.outputs); |
|
printf("Rolling Variance "); |
|
print_statistics(l.rolling_variance, l.outputs); |
|
*/ |
|
} |
|
printf("Biases "); |
|
print_statistics(l.biases, l.outputs); |
|
printf("Weights "); |
|
print_statistics(l.weights, l.outputs); |
|
} |
|
|
|
#ifdef GPU |
|
|
|
void pull_connected_layer(layer l) |
|
{ |
|
cuda_pull_array(l.weights_gpu, l.weights, l.inputs*l.outputs); |
|
cuda_pull_array(l.biases_gpu, l.biases, l.outputs); |
|
cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs); |
|
cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs); |
|
if (l.batch_normalize){ |
|
cuda_pull_array(l.scales_gpu, l.scales, l.outputs); |
|
cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs); |
|
cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs); |
|
} |
|
} |
|
|
|
void push_connected_layer(layer l) |
|
{ |
|
cuda_push_array(l.weights_gpu, l.weights, l.inputs*l.outputs); |
|
cuda_push_array(l.biases_gpu, l.biases, l.outputs); |
|
cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs); |
|
cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs); |
|
if (l.batch_normalize){ |
|
cuda_push_array(l.scales_gpu, l.scales, l.outputs); |
|
cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs); |
|
cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs); |
|
} |
|
} |
|
|
|
void update_connected_layer_gpu(layer l, update_args a) |
|
{ |
|
float learning_rate = a.learning_rate*l.learning_rate_scale; |
|
float momentum = a.momentum; |
|
float decay = a.decay; |
|
int batch = a.batch; |
|
if(a.adam){ |
|
adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.inputs*l.outputs, batch, a.t); |
|
adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.outputs, batch, a.t); |
|
if(l.scales_gpu){ |
|
adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.outputs, batch, a.t); |
|
} |
|
}else{ |
|
axpy_gpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1); |
|
scal_gpu(l.outputs, momentum, l.bias_updates_gpu, 1); |
|
|
|
if(l.batch_normalize){ |
|
axpy_gpu(l.outputs, learning_rate/batch, l.scale_updates_gpu, 1, l.scales_gpu, 1); |
|
scal_gpu(l.outputs, momentum, l.scale_updates_gpu, 1); |
|
} |
|
|
|
axpy_gpu(l.inputs*l.outputs, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); |
|
axpy_gpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); |
|
scal_gpu(l.inputs*l.outputs, momentum, l.weight_updates_gpu, 1); |
|
} |
|
} |
|
|
|
void forward_connected_layer_gpu(layer l, network net) |
|
{ |
|
fill_gpu(l.outputs*l.batch, 0, l.output_gpu, 1); |
|
|
|
int m = l.batch; |
|
int k = l.inputs; |
|
int n = l.outputs; |
|
float * a = net.input_gpu; |
|
float * b = l.weights_gpu; |
|
float * c = l.output_gpu; |
|
gemm_gpu(0,1,m,n,k,1,a,k,b,k,1,c,n); |
|
|
|
if (l.batch_normalize) { |
|
forward_batchnorm_layer_gpu(l, net); |
|
} else { |
|
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.outputs, 1); |
|
} |
|
activate_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation); |
|
} |
|
|
|
void backward_connected_layer_gpu(layer l, network net) |
|
{ |
|
constrain_gpu(l.outputs*l.batch, 1, l.delta_gpu, 1); |
|
gradient_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); |
|
if(l.batch_normalize){ |
|
backward_batchnorm_layer_gpu(l, net); |
|
} else { |
|
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.outputs, 1); |
|
} |
|
|
|
int m = l.outputs; |
|
int k = l.batch; |
|
int n = l.inputs; |
|
float * a = l.delta_gpu; |
|
float * b = net.input_gpu; |
|
float * c = l.weight_updates_gpu; |
|
gemm_gpu(1,0,m,n,k,1,a,m,b,n,1,c,n); |
|
|
|
m = l.batch; |
|
k = l.outputs; |
|
n = l.inputs; |
|
|
|
a = l.delta_gpu; |
|
b = l.weights_gpu; |
|
c = net.delta_gpu; |
|
|
|
if(c) gemm_gpu(0,0,m,n,k,1,a,k,b,n,1,c,n); |
|
} |
|
#endif
|
|
|