You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
452 lines
20 KiB
452 lines
20 KiB
//By downloading, copying, installing or using the software you agree to this license. |
|
//If you do not agree to this license, do not download, install, |
|
//copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// (3-clause BSD License) |
|
// |
|
//Copyright (C) 2000-2015, Intel Corporation, all rights reserved. |
|
//Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
//Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved. |
|
//Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. |
|
//Copyright (C) 2015, OpenCV Foundation, all rights reserved. |
|
//Copyright (C) 2015, Itseez Inc., all rights reserved. |
|
//Third party copyrights are property of their respective owners. |
|
// |
|
//Redistribution and use in source and binary forms, with or without modification, |
|
//are permitted provided that the following conditions are met: |
|
// |
|
// * Redistributions of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistributions in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * Neither the names of the copyright holders nor the names of the contributors |
|
// may be used to endorse or promote products derived from this software |
|
// without specific prior written permission. |
|
// |
|
//This software is provided by the copyright holders and contributors "as is" and |
|
//any express or implied warranties, including, but not limited to, the implied |
|
//warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
//In no event shall copyright holders or contributors be liable for any direct, |
|
//indirect, incidental, special, exemplary, or consequential damages |
|
//(including, but not limited to, procurement of substitute goods or services; |
|
//loss of use, data, or profits; or business interruption) however caused |
|
//and on any theory of liability, whether in contract, strict liability, |
|
//or tort (including negligence or otherwise) arising in any way out of |
|
//the use of this software, even if advised of the possibility of such damage. |
|
|
|
/*****************************************************************************************************************\ |
|
* The interface contains the main descriptors that will be implemented in the descriptor class * |
|
\*****************************************************************************************************************/ |
|
|
|
#include <stdint.h> |
|
#ifndef _OPENCV_DESCRIPTOR_HPP_ |
|
#define _OPENCV_DESCRIPTOR_HPP_ |
|
#ifdef __cplusplus |
|
|
|
namespace cv |
|
{ |
|
namespace stereo |
|
{ |
|
//types of supported kernels |
|
enum { |
|
CV_DENSE_CENSUS, CV_SPARSE_CENSUS, |
|
CV_CS_CENSUS, CV_MODIFIED_CS_CENSUS, CV_MODIFIED_CENSUS_TRANSFORM, |
|
CV_MEAN_VARIATION, CV_STAR_KERNEL |
|
}; |
|
//!Mean Variation is a robust kernel that compares a pixel |
|
//!not just with the center but also with the mean of the window |
|
template<int num_images> |
|
struct MVKernel |
|
{ |
|
uint8_t *image[num_images]; |
|
int *integralImage[num_images]; |
|
int stop; |
|
MVKernel(){} |
|
MVKernel(uint8_t **images, int **integral) |
|
{ |
|
for(int i = 0; i < num_images; i++) |
|
{ |
|
image[i] = images[i]; |
|
integralImage[i] = integral[i]; |
|
} |
|
stop = num_images; |
|
} |
|
void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const |
|
{ |
|
CV_UNUSED(w2); |
|
for (int i = 0; i < stop; i++) |
|
{ |
|
if (image[i][rrWidth + jj] > image[i][rWidth + j]) |
|
{ |
|
c[i] = c[i] + 1; |
|
} |
|
c[i] = c[i] << 1; |
|
if (integralImage[i][rrWidth + jj] > image[i][rWidth + j]) |
|
{ |
|
c[i] = c[i] + 1; |
|
} |
|
c[i] = c[i] << 1; |
|
} |
|
} |
|
}; |
|
//!Compares pixels from a patch giving high weights to pixels in which |
|
//!the intensity is higher. The other pixels receive a lower weight |
|
template <int num_images> |
|
struct MCTKernel |
|
{ |
|
uint8_t *image[num_images]; |
|
int t,imageStop; |
|
MCTKernel(){} |
|
MCTKernel(uint8_t ** images, int threshold) |
|
{ |
|
for(int i = 0; i < num_images; i++) |
|
{ |
|
image[i] = images[i]; |
|
} |
|
imageStop = num_images; |
|
t = threshold; |
|
} |
|
void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const |
|
{ |
|
CV_UNUSED(w2); |
|
for(int i = 0; i < imageStop; i++) |
|
{ |
|
if (image[i][rrWidth + jj] > image[i][rWidth + j] - t) |
|
{ |
|
c[i] = c[i] << 1; |
|
c[i] = c[i] + 1; |
|
c[i] = c[i] << 1; |
|
c[i] = c[i] + 1; |
|
} |
|
else if (image[i][rWidth + j] - t < image[i][rrWidth + jj] && image[i][rWidth + j] + t >= image[i][rrWidth + jj]) |
|
{ |
|
c[i] = c[i] << 2; |
|
c[i] = c[i] + 1; |
|
} |
|
else |
|
{ |
|
c[i] <<= 2; |
|
} |
|
} |
|
} |
|
}; |
|
//!A madified cs census that compares a pixel with the imediat neightbour starting |
|
//!from the center |
|
template<int num_images> |
|
struct ModifiedCsCensus |
|
{ |
|
uint8_t *image[num_images]; |
|
int n2; |
|
int imageStop; |
|
ModifiedCsCensus(){} |
|
ModifiedCsCensus(uint8_t **images, int ker) |
|
{ |
|
for(int i = 0; i < num_images; i++) |
|
image[i] = images[i]; |
|
imageStop = num_images; |
|
n2 = ker; |
|
} |
|
void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const |
|
{ |
|
CV_UNUSED(j); |
|
CV_UNUSED(rWidth); |
|
for(int i = 0; i < imageStop; i++) |
|
{ |
|
if (image[i][(rrWidth + jj)] > image[i][(w2 + (jj + n2))]) |
|
{ |
|
c[i] = c[i] + 1; |
|
} |
|
c[i] = c[i] * 2; |
|
} |
|
} |
|
}; |
|
//!A kernel in which a pixel is compared with the center of the window |
|
template<int num_images> |
|
struct CensusKernel |
|
{ |
|
uint8_t *image[num_images]; |
|
int imageStop; |
|
CensusKernel(){} |
|
CensusKernel(uint8_t **images) |
|
{ |
|
for(int i = 0; i < num_images; i++) |
|
image[i] = images[i]; |
|
imageStop = num_images; |
|
} |
|
void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const |
|
{ |
|
CV_UNUSED(w2); |
|
for(int i = 0; i < imageStop; i++) |
|
{ |
|
////compare a pixel with the center from the kernel |
|
if (image[i][rrWidth + jj] > image[i][rWidth + j]) |
|
{ |
|
c[i] += 1; |
|
} |
|
c[i] <<= 1; |
|
} |
|
} |
|
}; |
|
//template clas which efficiently combines the descriptors |
|
template <int step_start, int step_end, int step_inc,int nr_img, typename Kernel> |
|
class CombinedDescriptor:public ParallelLoopBody |
|
{ |
|
private: |
|
int width, height,n2; |
|
int stride_; |
|
int *dst[nr_img]; |
|
Kernel kernel_; |
|
int n2_stop; |
|
public: |
|
CombinedDescriptor(int w, int h,int stride, int k2, int **distance, Kernel kernel,int k2Stop) |
|
{ |
|
width = w; |
|
height = h; |
|
n2 = k2; |
|
stride_ = stride; |
|
for(int i = 0; i < nr_img; i++) |
|
dst[i] = distance[i]; |
|
kernel_ = kernel; |
|
n2_stop = k2Stop; |
|
} |
|
void operator()(const cv::Range &r) const CV_OVERRIDE { |
|
for (int i = r.start; i <= r.end ; i++) |
|
{ |
|
int rWidth = i * stride_; |
|
for (int j = n2 + 2; j <= width - n2 - 2; j++) |
|
{ |
|
int c[nr_img]; |
|
memset(c,0,nr_img); |
|
for(int step = step_start; step <= step_end; step += step_inc) |
|
{ |
|
for (int ii = - n2; ii <= + n2_stop; ii += step) |
|
{ |
|
int rrWidth = (ii + i) * stride_; |
|
int rrWidthC = (ii + i + n2) * stride_; |
|
for (int jj = j - n2; jj <= j + n2; jj += step) |
|
{ |
|
if (ii != i || jj != j) |
|
{ |
|
kernel_(rrWidth,rrWidthC, rWidth, jj, j,c); |
|
} |
|
} |
|
} |
|
} |
|
for(int l = 0; l < nr_img; l++) |
|
dst[l][rWidth + j] = c[l]; |
|
} |
|
} |
|
} |
|
}; |
|
//!calculate the mean of every windowSizexWindwoSize block from the integral Image |
|
//!this is a preprocessing for MV kernel |
|
class MeanKernelIntegralImage : public ParallelLoopBody |
|
{ |
|
private: |
|
int *img; |
|
int windowSize,width; |
|
float scalling; |
|
int *c; |
|
public: |
|
MeanKernelIntegralImage(const cv::Mat &image, int window,float scale, int *cost): |
|
img((int *)image.data),windowSize(window) ,width(image.cols) ,scalling(scale) , c(cost){}; |
|
void operator()(const cv::Range &r) const CV_OVERRIDE { |
|
for (int i = r.start; i <= r.end; i++) |
|
{ |
|
int iw = i * width; |
|
for (int j = windowSize + 1; j <= width - windowSize - 1; j++) |
|
{ |
|
c[iw + j] = (int)((img[(i + windowSize - 1) * width + j + windowSize - 1] + img[(i - windowSize - 1) * width + j - windowSize - 1] |
|
- img[(i + windowSize) * width + j - windowSize] - img[(i - windowSize) * width + j + windowSize]) * scalling); |
|
} |
|
} |
|
} |
|
}; |
|
//!implementation for the star kernel descriptor |
|
template<int num_images> |
|
class StarKernelCensus:public ParallelLoopBody |
|
{ |
|
private: |
|
uint8_t *image[num_images]; |
|
int *dst[num_images]; |
|
int n2, width, height, im_num,stride_; |
|
public: |
|
StarKernelCensus(const cv::Mat *img, int k2, int **distance) |
|
{ |
|
for(int i = 0; i < num_images; i++) |
|
{ |
|
image[i] = img[i].data; |
|
dst[i] = distance[i]; |
|
} |
|
n2 = k2; |
|
width = img[0].cols; |
|
height = img[0].rows; |
|
im_num = num_images; |
|
stride_ = (int)img[0].step; |
|
} |
|
void operator()(const cv::Range &r) const CV_OVERRIDE { |
|
for (int i = r.start; i <= r.end ; i++) |
|
{ |
|
int rWidth = i * stride_; |
|
for (int j = n2; j <= width - n2; j++) |
|
{ |
|
for(int d = 0 ; d < im_num; d++) |
|
{ |
|
int c = 0; |
|
for(int step = 4; step > 0; step--) |
|
{ |
|
for (int ii = i - step; ii <= i + step; ii += step) |
|
{ |
|
int rrWidth = ii * stride_; |
|
for (int jj = j - step; jj <= j + step; jj += step) |
|
{ |
|
if (image[d][rrWidth + jj] > image[d][rWidth + j]) |
|
{ |
|
c = c + 1; |
|
} |
|
c = c * 2; |
|
} |
|
} |
|
} |
|
for (int ii = -1; ii <= +1; ii++) |
|
{ |
|
int rrWidth = (ii + i) * stride_; |
|
if (i == -1) |
|
{ |
|
if (ii + i != i) |
|
{ |
|
if (image[d][rrWidth + j] > image[d][rWidth + j]) |
|
{ |
|
c = c + 1; |
|
} |
|
c = c * 2; |
|
} |
|
} |
|
else if (i == 0) |
|
{ |
|
for (int j2 = -1; j2 <= 1; j2 += 2) |
|
{ |
|
if (ii + i != i) |
|
{ |
|
if (image[d][rrWidth + j + j2] > image[d][rWidth + j]) |
|
{ |
|
c = c + 1; |
|
} |
|
c = c * 2; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
if (ii + i != i) |
|
{ |
|
if (image[d][rrWidth + j] > image[d][rWidth + j]) |
|
{ |
|
c = c + 1; |
|
} |
|
c = c * 2; |
|
} |
|
} |
|
} |
|
dst[d][rWidth + j] = c; |
|
} |
|
} |
|
} |
|
} |
|
}; |
|
//!paralel implementation of the center symetric census |
|
template <int num_images> |
|
class SymetricCensus:public ParallelLoopBody |
|
{ |
|
private: |
|
uint8_t *image[num_images]; |
|
int *dst[num_images]; |
|
int n2, width, height, im_num,stride_; |
|
public: |
|
SymetricCensus(const cv::Mat *img, int k2, int **distance) |
|
{ |
|
for(int i = 0; i < num_images; i++) |
|
{ |
|
image[i] = img[i].data; |
|
dst[i] = distance[i]; |
|
} |
|
n2 = k2; |
|
width = img[0].cols; |
|
height = img[0].rows; |
|
im_num = num_images; |
|
stride_ = (int)img[0].step; |
|
} |
|
void operator()(const cv::Range &r) const CV_OVERRIDE { |
|
for (int i = r.start; i <= r.end ; i++) |
|
{ |
|
int distV = i*stride_; |
|
for (int j = n2; j <= width - n2; j++) |
|
{ |
|
for(int d = 0; d < im_num; d++) |
|
{ |
|
int c = 0; |
|
//the classic center symetric census which compares the curent pixel with its symetric not its center. |
|
for (int ii = -n2; ii <= 0; ii++) |
|
{ |
|
int rrWidth = (ii + i) * stride_; |
|
for (int jj = -n2; jj <= +n2; jj++) |
|
{ |
|
if (image[d][(rrWidth + (jj + j))] > image[d][((ii * (-1) + i) * width + (-1 * jj) + j)]) |
|
{ |
|
c = c + 1; |
|
} |
|
c = c * 2; |
|
if(ii == 0 && jj < 0) |
|
{ |
|
if (image[d][(i * width + (jj + j))] > image[d][(i * width + (-1 * jj) + j)]) |
|
{ |
|
c = c + 1; |
|
} |
|
c = c * 2; |
|
} |
|
} |
|
} |
|
dst[d][(distV + j)] = c; |
|
} |
|
} |
|
} |
|
} |
|
}; |
|
/** |
|
Two variations of census applied on input images |
|
Implementation of a census transform which is taking into account just the some pixels from the census kernel thus allowing for larger block sizes |
|
**/ |
|
//void applyCensusOnImages(const cv::Mat &im1,const cv::Mat &im2, int kernelSize, cv::Mat &dist, cv::Mat &dist2, const int type); |
|
CV_EXPORTS void censusTransform(const cv::Mat &image1, const cv::Mat &image2, int kernelSize, cv::Mat &dist1, cv::Mat &dist2, const int type); |
|
//single image census transform |
|
CV_EXPORTS void censusTransform(const cv::Mat &image1, int kernelSize, cv::Mat &dist1, const int type); |
|
/** |
|
STANDARD_MCT - Modified census which is memorizing for each pixel 2 bits and includes a tolerance to the pixel comparison |
|
MCT_MEAN_VARIATION - Implementation of a modified census transform which is also taking into account the variation to the mean of the window not just the center pixel |
|
**/ |
|
CV_EXPORTS void modifiedCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1,cv::Mat &dist2, const int type, int t = 0 , const cv::Mat &IntegralImage1 = cv::Mat::zeros(100,100,CV_8UC1), const cv::Mat &IntegralImage2 = cv::Mat::zeros(100,100,CV_8UC1)); |
|
//single version of modified census transform descriptor |
|
CV_EXPORTS void modifiedCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist, const int type, int t = 0 ,const cv::Mat &IntegralImage = cv::Mat::zeros(100,100,CV_8UC1)); |
|
/**The classical center symetric census |
|
A modified version of cs census which is comparing a pixel with its correspondent after the center |
|
**/ |
|
CV_EXPORTS void symetricCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1, cv::Mat &dist2, const int type); |
|
//single version of census transform |
|
CV_EXPORTS void symetricCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist1, const int type); |
|
//in a 9x9 kernel only certain positions are choosen |
|
CV_EXPORTS void starCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1,cv::Mat &dist2); |
|
//single image version of star kernel |
|
CV_EXPORTS void starCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist); |
|
//integral image computation used in the Mean Variation Census Transform |
|
void imageMeanKernelSize(const cv::Mat &img, int windowSize, cv::Mat &c); |
|
} |
|
} |
|
#endif |
|
#endif |
|
/*End of file*/
|
|
|